↳ ITRS
↳ ITRStoIDPProof
z
eval(x, y, z) → Cond_eval2(&&(&&(>@z(y, z), >=@z(z, x)), >=@z(z, y)), x, y, z)
Cond_eval5(TRUE, x, y, z) → eval(x, y, z)
Cond_eval2(TRUE, x, y, z) → eval(x, y, z)
eval(x, y, z) → Cond_eval5(&&(&&(>@z(x, z), >=@z(z, x)), >=@z(z, y)), x, y, z)
eval(x, y, z) → Cond_eval4(>@z(x, z), x, y, z)
Cond_eval4(TRUE, x, y, z) → eval(-@z(x, 1@z), y, z)
Cond_eval(TRUE, x, y, z) → eval(-@z(x, 1@z), y, z)
eval(x, y, z) → Cond_eval(&&(>@z(y, z), >@z(x, z)), x, y, z)
Cond_eval1(TRUE, x, y, z) → eval(x, -@z(y, 1@z), z)
eval(x, y, z) → Cond_eval3(&&(&&(>@z(x, z), >=@z(z, x)), >@z(y, z)), x, y, z)
eval(x, y, z) → Cond_eval1(&&(>@z(y, z), >=@z(z, x)), x, y, z)
Cond_eval3(TRUE, x, y, z) → eval(x, -@z(y, 1@z), z)
eval(x0, x1, x2)
Cond_eval5(TRUE, x0, x1, x2)
Cond_eval2(TRUE, x0, x1, x2)
Cond_eval4(TRUE, x0, x1, x2)
Cond_eval(TRUE, x0, x1, x2)
Cond_eval1(TRUE, x0, x1, x2)
Cond_eval3(TRUE, x0, x1, x2)
↳ ITRS
↳ ITRStoIDPProof
↳ IDP
↳ UsableRulesProof
z
eval(x, y, z) → Cond_eval2(&&(&&(>@z(y, z), >=@z(z, x)), >=@z(z, y)), x, y, z)
Cond_eval5(TRUE, x, y, z) → eval(x, y, z)
Cond_eval2(TRUE, x, y, z) → eval(x, y, z)
eval(x, y, z) → Cond_eval5(&&(&&(>@z(x, z), >=@z(z, x)), >=@z(z, y)), x, y, z)
eval(x, y, z) → Cond_eval4(>@z(x, z), x, y, z)
Cond_eval4(TRUE, x, y, z) → eval(-@z(x, 1@z), y, z)
Cond_eval(TRUE, x, y, z) → eval(-@z(x, 1@z), y, z)
eval(x, y, z) → Cond_eval(&&(>@z(y, z), >@z(x, z)), x, y, z)
Cond_eval1(TRUE, x, y, z) → eval(x, -@z(y, 1@z), z)
eval(x, y, z) → Cond_eval3(&&(&&(>@z(x, z), >=@z(z, x)), >@z(y, z)), x, y, z)
eval(x, y, z) → Cond_eval1(&&(>@z(y, z), >=@z(z, x)), x, y, z)
Cond_eval3(TRUE, x, y, z) → eval(x, -@z(y, 1@z), z)
(0) -> (1), if ((y[0] →* y[1])∧(z[0] →* z[1])∧(-@z(x[0], 1@z) →* x[1]))
(0) -> (2), if ((y[0] →* y[2])∧(z[0] →* z[2])∧(-@z(x[0], 1@z) →* x[2]))
(0) -> (3), if ((y[0] →* y[3])∧(z[0] →* z[3])∧(-@z(x[0], 1@z) →* x[3]))
(0) -> (5), if ((y[0] →* y[5])∧(z[0] →* z[5])∧(-@z(x[0], 1@z) →* x[5]))
(0) -> (6), if ((y[0] →* y[6])∧(z[0] →* z[6])∧(-@z(x[0], 1@z) →* x[6]))
(0) -> (10), if ((y[0] →* y[10])∧(z[0] →* z[10])∧(-@z(x[0], 1@z) →* x[10]))
(1) -> (11), if ((z[1] →* z[11])∧(x[1] →* x[11])∧(y[1] →* y[11])∧(&&(>@z(y[1], z[1]), >=@z(z[1], x[1])) →* TRUE))
(2) -> (0), if ((z[2] →* z[0])∧(x[2] →* x[0])∧(y[2] →* y[0])∧(&&(>@z(y[2], z[2]), >@z(x[2], z[2])) →* TRUE))
(3) -> (8), if ((z[3] →* z[8])∧(x[3] →* x[8])∧(y[3] →* y[8])∧(&&(&&(>@z(x[3], z[3]), >=@z(z[3], x[3])), >@z(y[3], z[3])) →* TRUE))
(4) -> (1), if ((y[4] →* y[1])∧(z[4] →* z[1])∧(-@z(x[4], 1@z) →* x[1]))
(4) -> (2), if ((y[4] →* y[2])∧(z[4] →* z[2])∧(-@z(x[4], 1@z) →* x[2]))
(4) -> (3), if ((y[4] →* y[3])∧(z[4] →* z[3])∧(-@z(x[4], 1@z) →* x[3]))
(4) -> (5), if ((y[4] →* y[5])∧(z[4] →* z[5])∧(-@z(x[4], 1@z) →* x[5]))
(4) -> (6), if ((y[4] →* y[6])∧(z[4] →* z[6])∧(-@z(x[4], 1@z) →* x[6]))
(4) -> (10), if ((y[4] →* y[10])∧(z[4] →* z[10])∧(-@z(x[4], 1@z) →* x[10]))
(5) -> (9), if ((z[5] →* z[9])∧(x[5] →* x[9])∧(y[5] →* y[9])∧(&&(&&(>@z(y[5], z[5]), >=@z(z[5], x[5])), >=@z(z[5], y[5])) →* TRUE))
(6) -> (4), if ((z[6] →* z[4])∧(x[6] →* x[4])∧(y[6] →* y[4])∧(>@z(x[6], z[6]) →* TRUE))
(7) -> (1), if ((y[7] →* y[1])∧(z[7] →* z[1])∧(x[7] →* x[1]))
(7) -> (2), if ((y[7] →* y[2])∧(z[7] →* z[2])∧(x[7] →* x[2]))
(7) -> (3), if ((y[7] →* y[3])∧(z[7] →* z[3])∧(x[7] →* x[3]))
(7) -> (5), if ((y[7] →* y[5])∧(z[7] →* z[5])∧(x[7] →* x[5]))
(7) -> (6), if ((y[7] →* y[6])∧(z[7] →* z[6])∧(x[7] →* x[6]))
(7) -> (10), if ((y[7] →* y[10])∧(z[7] →* z[10])∧(x[7] →* x[10]))
(8) -> (1), if ((-@z(y[8], 1@z) →* y[1])∧(z[8] →* z[1])∧(x[8] →* x[1]))
(8) -> (2), if ((-@z(y[8], 1@z) →* y[2])∧(z[8] →* z[2])∧(x[8] →* x[2]))
(8) -> (3), if ((-@z(y[8], 1@z) →* y[3])∧(z[8] →* z[3])∧(x[8] →* x[3]))
(8) -> (5), if ((-@z(y[8], 1@z) →* y[5])∧(z[8] →* z[5])∧(x[8] →* x[5]))
(8) -> (6), if ((-@z(y[8], 1@z) →* y[6])∧(z[8] →* z[6])∧(x[8] →* x[6]))
(8) -> (10), if ((-@z(y[8], 1@z) →* y[10])∧(z[8] →* z[10])∧(x[8] →* x[10]))
(9) -> (1), if ((y[9] →* y[1])∧(z[9] →* z[1])∧(x[9] →* x[1]))
(9) -> (2), if ((y[9] →* y[2])∧(z[9] →* z[2])∧(x[9] →* x[2]))
(9) -> (3), if ((y[9] →* y[3])∧(z[9] →* z[3])∧(x[9] →* x[3]))
(9) -> (5), if ((y[9] →* y[5])∧(z[9] →* z[5])∧(x[9] →* x[5]))
(9) -> (6), if ((y[9] →* y[6])∧(z[9] →* z[6])∧(x[9] →* x[6]))
(9) -> (10), if ((y[9] →* y[10])∧(z[9] →* z[10])∧(x[9] →* x[10]))
(10) -> (7), if ((z[10] →* z[7])∧(x[10] →* x[7])∧(y[10] →* y[7])∧(&&(&&(>@z(x[10], z[10]), >=@z(z[10], x[10])), >=@z(z[10], y[10])) →* TRUE))
(11) -> (1), if ((-@z(y[11], 1@z) →* y[1])∧(z[11] →* z[1])∧(x[11] →* x[1]))
(11) -> (2), if ((-@z(y[11], 1@z) →* y[2])∧(z[11] →* z[2])∧(x[11] →* x[2]))
(11) -> (3), if ((-@z(y[11], 1@z) →* y[3])∧(z[11] →* z[3])∧(x[11] →* x[3]))
(11) -> (5), if ((-@z(y[11], 1@z) →* y[5])∧(z[11] →* z[5])∧(x[11] →* x[5]))
(11) -> (6), if ((-@z(y[11], 1@z) →* y[6])∧(z[11] →* z[6])∧(x[11] →* x[6]))
(11) -> (10), if ((-@z(y[11], 1@z) →* y[10])∧(z[11] →* z[10])∧(x[11] →* x[10]))
eval(x0, x1, x2)
Cond_eval5(TRUE, x0, x1, x2)
Cond_eval2(TRUE, x0, x1, x2)
Cond_eval4(TRUE, x0, x1, x2)
Cond_eval(TRUE, x0, x1, x2)
Cond_eval1(TRUE, x0, x1, x2)
Cond_eval3(TRUE, x0, x1, x2)
↳ ITRS
↳ ITRStoIDPProof
↳ IDP
↳ UsableRulesProof
↳ IDP
↳ IDPNonInfProof
z
(0) -> (1), if ((y[0] →* y[1])∧(z[0] →* z[1])∧(-@z(x[0], 1@z) →* x[1]))
(0) -> (2), if ((y[0] →* y[2])∧(z[0] →* z[2])∧(-@z(x[0], 1@z) →* x[2]))
(0) -> (3), if ((y[0] →* y[3])∧(z[0] →* z[3])∧(-@z(x[0], 1@z) →* x[3]))
(0) -> (5), if ((y[0] →* y[5])∧(z[0] →* z[5])∧(-@z(x[0], 1@z) →* x[5]))
(0) -> (6), if ((y[0] →* y[6])∧(z[0] →* z[6])∧(-@z(x[0], 1@z) →* x[6]))
(0) -> (10), if ((y[0] →* y[10])∧(z[0] →* z[10])∧(-@z(x[0], 1@z) →* x[10]))
(1) -> (11), if ((z[1] →* z[11])∧(x[1] →* x[11])∧(y[1] →* y[11])∧(&&(>@z(y[1], z[1]), >=@z(z[1], x[1])) →* TRUE))
(2) -> (0), if ((z[2] →* z[0])∧(x[2] →* x[0])∧(y[2] →* y[0])∧(&&(>@z(y[2], z[2]), >@z(x[2], z[2])) →* TRUE))
(3) -> (8), if ((z[3] →* z[8])∧(x[3] →* x[8])∧(y[3] →* y[8])∧(&&(&&(>@z(x[3], z[3]), >=@z(z[3], x[3])), >@z(y[3], z[3])) →* TRUE))
(4) -> (1), if ((y[4] →* y[1])∧(z[4] →* z[1])∧(-@z(x[4], 1@z) →* x[1]))
(4) -> (2), if ((y[4] →* y[2])∧(z[4] →* z[2])∧(-@z(x[4], 1@z) →* x[2]))
(4) -> (3), if ((y[4] →* y[3])∧(z[4] →* z[3])∧(-@z(x[4], 1@z) →* x[3]))
(4) -> (5), if ((y[4] →* y[5])∧(z[4] →* z[5])∧(-@z(x[4], 1@z) →* x[5]))
(4) -> (6), if ((y[4] →* y[6])∧(z[4] →* z[6])∧(-@z(x[4], 1@z) →* x[6]))
(4) -> (10), if ((y[4] →* y[10])∧(z[4] →* z[10])∧(-@z(x[4], 1@z) →* x[10]))
(5) -> (9), if ((z[5] →* z[9])∧(x[5] →* x[9])∧(y[5] →* y[9])∧(&&(&&(>@z(y[5], z[5]), >=@z(z[5], x[5])), >=@z(z[5], y[5])) →* TRUE))
(6) -> (4), if ((z[6] →* z[4])∧(x[6] →* x[4])∧(y[6] →* y[4])∧(>@z(x[6], z[6]) →* TRUE))
(7) -> (1), if ((y[7] →* y[1])∧(z[7] →* z[1])∧(x[7] →* x[1]))
(7) -> (2), if ((y[7] →* y[2])∧(z[7] →* z[2])∧(x[7] →* x[2]))
(7) -> (3), if ((y[7] →* y[3])∧(z[7] →* z[3])∧(x[7] →* x[3]))
(7) -> (5), if ((y[7] →* y[5])∧(z[7] →* z[5])∧(x[7] →* x[5]))
(7) -> (6), if ((y[7] →* y[6])∧(z[7] →* z[6])∧(x[7] →* x[6]))
(7) -> (10), if ((y[7] →* y[10])∧(z[7] →* z[10])∧(x[7] →* x[10]))
(8) -> (1), if ((-@z(y[8], 1@z) →* y[1])∧(z[8] →* z[1])∧(x[8] →* x[1]))
(8) -> (2), if ((-@z(y[8], 1@z) →* y[2])∧(z[8] →* z[2])∧(x[8] →* x[2]))
(8) -> (3), if ((-@z(y[8], 1@z) →* y[3])∧(z[8] →* z[3])∧(x[8] →* x[3]))
(8) -> (5), if ((-@z(y[8], 1@z) →* y[5])∧(z[8] →* z[5])∧(x[8] →* x[5]))
(8) -> (6), if ((-@z(y[8], 1@z) →* y[6])∧(z[8] →* z[6])∧(x[8] →* x[6]))
(8) -> (10), if ((-@z(y[8], 1@z) →* y[10])∧(z[8] →* z[10])∧(x[8] →* x[10]))
(9) -> (1), if ((y[9] →* y[1])∧(z[9] →* z[1])∧(x[9] →* x[1]))
(9) -> (2), if ((y[9] →* y[2])∧(z[9] →* z[2])∧(x[9] →* x[2]))
(9) -> (3), if ((y[9] →* y[3])∧(z[9] →* z[3])∧(x[9] →* x[3]))
(9) -> (5), if ((y[9] →* y[5])∧(z[9] →* z[5])∧(x[9] →* x[5]))
(9) -> (6), if ((y[9] →* y[6])∧(z[9] →* z[6])∧(x[9] →* x[6]))
(9) -> (10), if ((y[9] →* y[10])∧(z[9] →* z[10])∧(x[9] →* x[10]))
(10) -> (7), if ((z[10] →* z[7])∧(x[10] →* x[7])∧(y[10] →* y[7])∧(&&(&&(>@z(x[10], z[10]), >=@z(z[10], x[10])), >=@z(z[10], y[10])) →* TRUE))
(11) -> (1), if ((-@z(y[11], 1@z) →* y[1])∧(z[11] →* z[1])∧(x[11] →* x[1]))
(11) -> (2), if ((-@z(y[11], 1@z) →* y[2])∧(z[11] →* z[2])∧(x[11] →* x[2]))
(11) -> (3), if ((-@z(y[11], 1@z) →* y[3])∧(z[11] →* z[3])∧(x[11] →* x[3]))
(11) -> (5), if ((-@z(y[11], 1@z) →* y[5])∧(z[11] →* z[5])∧(x[11] →* x[5]))
(11) -> (6), if ((-@z(y[11], 1@z) →* y[6])∧(z[11] →* z[6])∧(x[11] →* x[6]))
(11) -> (10), if ((-@z(y[11], 1@z) →* y[10])∧(z[11] →* z[10])∧(x[11] →* x[10]))
eval(x0, x1, x2)
Cond_eval5(TRUE, x0, x1, x2)
Cond_eval2(TRUE, x0, x1, x2)
Cond_eval4(TRUE, x0, x1, x2)
Cond_eval(TRUE, x0, x1, x2)
Cond_eval1(TRUE, x0, x1, x2)
Cond_eval3(TRUE, x0, x1, x2)
(1) (z[2]=z[0]∧x[2]=x[0]∧&&(>@z(y[2], z[2]), >@z(x[2], z[2]))=TRUE∧y[2]=y[0] ⇒ COND_EVAL(TRUE, x[0], y[0], z[0])≥NonInfC∧COND_EVAL(TRUE, x[0], y[0], z[0])≥EVAL(-@z(x[0], 1@z), y[0], z[0])∧(UIncreasing(EVAL(-@z(x[0], 1@z), y[0], z[0])), ≥))
(2) (>@z(y[2], z[2])=TRUE∧>@z(x[2], z[2])=TRUE ⇒ COND_EVAL(TRUE, x[2], y[2], z[2])≥NonInfC∧COND_EVAL(TRUE, x[2], y[2], z[2])≥EVAL(-@z(x[2], 1@z), y[2], z[2])∧(UIncreasing(EVAL(-@z(x[0], 1@z), y[0], z[0])), ≥))
(3) (y[2] + -1 + (-1)z[2] ≥ 0∧-1 + x[2] + (-1)z[2] ≥ 0 ⇒ (UIncreasing(EVAL(-@z(x[0], 1@z), y[0], z[0])), ≥)∧0 ≥ 0∧0 ≥ 0)
(4) (y[2] + -1 + (-1)z[2] ≥ 0∧-1 + x[2] + (-1)z[2] ≥ 0 ⇒ (UIncreasing(EVAL(-@z(x[0], 1@z), y[0], z[0])), ≥)∧0 ≥ 0∧0 ≥ 0)
(5) (-1 + x[2] + (-1)z[2] ≥ 0∧y[2] + -1 + (-1)z[2] ≥ 0 ⇒ 0 ≥ 0∧(UIncreasing(EVAL(-@z(x[0], 1@z), y[0], z[0])), ≥)∧0 ≥ 0)
(6) (x[2] ≥ 0∧y[2] + -1 + (-1)z[2] ≥ 0 ⇒ 0 ≥ 0∧(UIncreasing(EVAL(-@z(x[0], 1@z), y[0], z[0])), ≥)∧0 ≥ 0)
(7) (x[2] ≥ 0∧z[2] ≥ 0 ⇒ 0 ≥ 0∧(UIncreasing(EVAL(-@z(x[0], 1@z), y[0], z[0])), ≥)∧0 ≥ 0)
(8) (x[2] ≥ 0∧z[2] ≥ 0∧y[2] ≥ 0 ⇒ 0 ≥ 0∧(UIncreasing(EVAL(-@z(x[0], 1@z), y[0], z[0])), ≥)∧0 ≥ 0)
(9) (x[2] ≥ 0∧z[2] ≥ 0∧y[2] ≥ 0 ⇒ 0 ≥ 0∧(UIncreasing(EVAL(-@z(x[0], 1@z), y[0], z[0])), ≥)∧0 ≥ 0)
(10) (EVAL(x[1], y[1], z[1])≥NonInfC∧EVAL(x[1], y[1], z[1])≥COND_EVAL1(&&(>@z(y[1], z[1]), >=@z(z[1], x[1])), x[1], y[1], z[1])∧(UIncreasing(COND_EVAL1(&&(>@z(y[1], z[1]), >=@z(z[1], x[1])), x[1], y[1], z[1])), ≥))
(11) ((UIncreasing(COND_EVAL1(&&(>@z(y[1], z[1]), >=@z(z[1], x[1])), x[1], y[1], z[1])), ≥)∧0 ≥ 0∧0 ≥ 0)
(12) ((UIncreasing(COND_EVAL1(&&(>@z(y[1], z[1]), >=@z(z[1], x[1])), x[1], y[1], z[1])), ≥)∧0 ≥ 0∧0 ≥ 0)
(13) (0 ≥ 0∧0 ≥ 0∧(UIncreasing(COND_EVAL1(&&(>@z(y[1], z[1]), >=@z(z[1], x[1])), x[1], y[1], z[1])), ≥))
(14) (0 = 0∧0 ≥ 0∧0 = 0∧0 = 0∧0 = 0∧0 = 0∧(UIncreasing(COND_EVAL1(&&(>@z(y[1], z[1]), >=@z(z[1], x[1])), x[1], y[1], z[1])), ≥)∧0 ≥ 0∧0 = 0)
(15) (EVAL(x[2], y[2], z[2])≥NonInfC∧EVAL(x[2], y[2], z[2])≥COND_EVAL(&&(>@z(y[2], z[2]), >@z(x[2], z[2])), x[2], y[2], z[2])∧(UIncreasing(COND_EVAL(&&(>@z(y[2], z[2]), >@z(x[2], z[2])), x[2], y[2], z[2])), ≥))
(16) ((UIncreasing(COND_EVAL(&&(>@z(y[2], z[2]), >@z(x[2], z[2])), x[2], y[2], z[2])), ≥)∧0 ≥ 0∧0 ≥ 0)
(17) ((UIncreasing(COND_EVAL(&&(>@z(y[2], z[2]), >@z(x[2], z[2])), x[2], y[2], z[2])), ≥)∧0 ≥ 0∧0 ≥ 0)
(18) (0 ≥ 0∧0 ≥ 0∧(UIncreasing(COND_EVAL(&&(>@z(y[2], z[2]), >@z(x[2], z[2])), x[2], y[2], z[2])), ≥))
(19) (0 = 0∧0 = 0∧0 = 0∧0 ≥ 0∧0 = 0∧0 ≥ 0∧(UIncreasing(COND_EVAL(&&(>@z(y[2], z[2]), >@z(x[2], z[2])), x[2], y[2], z[2])), ≥)∧0 = 0∧0 = 0)
(20) (EVAL(x[3], y[3], z[3])≥NonInfC∧EVAL(x[3], y[3], z[3])≥COND_EVAL3(&&(&&(>@z(x[3], z[3]), >=@z(z[3], x[3])), >@z(y[3], z[3])), x[3], y[3], z[3])∧(UIncreasing(COND_EVAL3(&&(&&(>@z(x[3], z[3]), >=@z(z[3], x[3])), >@z(y[3], z[3])), x[3], y[3], z[3])), ≥))
(21) ((UIncreasing(COND_EVAL3(&&(&&(>@z(x[3], z[3]), >=@z(z[3], x[3])), >@z(y[3], z[3])), x[3], y[3], z[3])), ≥)∧0 ≥ 0∧1 ≥ 0)
(22) ((UIncreasing(COND_EVAL3(&&(&&(>@z(x[3], z[3]), >=@z(z[3], x[3])), >@z(y[3], z[3])), x[3], y[3], z[3])), ≥)∧0 ≥ 0∧1 ≥ 0)
(23) (1 ≥ 0∧0 ≥ 0∧(UIncreasing(COND_EVAL3(&&(&&(>@z(x[3], z[3]), >=@z(z[3], x[3])), >@z(y[3], z[3])), x[3], y[3], z[3])), ≥))
(24) (0 = 0∧0 = 0∧1 ≥ 0∧0 = 0∧0 = 0∧0 = 0∧0 ≥ 0∧0 = 0∧(UIncreasing(COND_EVAL3(&&(&&(>@z(x[3], z[3]), >=@z(z[3], x[3])), >@z(y[3], z[3])), x[3], y[3], z[3])), ≥))
(25) (y[6]=y[4]∧x[6]=x[4]∧>@z(x[6], z[6])=TRUE∧z[6]=z[4] ⇒ COND_EVAL4(TRUE, x[4], y[4], z[4])≥NonInfC∧COND_EVAL4(TRUE, x[4], y[4], z[4])≥EVAL(-@z(x[4], 1@z), y[4], z[4])∧(UIncreasing(EVAL(-@z(x[4], 1@z), y[4], z[4])), ≥))
(26) (>@z(x[6], z[6])=TRUE ⇒ COND_EVAL4(TRUE, x[6], y[6], z[6])≥NonInfC∧COND_EVAL4(TRUE, x[6], y[6], z[6])≥EVAL(-@z(x[6], 1@z), y[6], z[6])∧(UIncreasing(EVAL(-@z(x[4], 1@z), y[4], z[4])), ≥))
(27) (x[6] + -1 + (-1)z[6] ≥ 0 ⇒ (UIncreasing(EVAL(-@z(x[4], 1@z), y[4], z[4])), ≥)∧0 ≥ 0∧0 ≥ 0)
(28) (x[6] + -1 + (-1)z[6] ≥ 0 ⇒ (UIncreasing(EVAL(-@z(x[4], 1@z), y[4], z[4])), ≥)∧0 ≥ 0∧0 ≥ 0)
(29) (x[6] + -1 + (-1)z[6] ≥ 0 ⇒ 0 ≥ 0∧0 ≥ 0∧(UIncreasing(EVAL(-@z(x[4], 1@z), y[4], z[4])), ≥))
(30) (x[6] + -1 + (-1)z[6] ≥ 0 ⇒ 0 ≥ 0∧0 = 0∧0 = 0∧(UIncreasing(EVAL(-@z(x[4], 1@z), y[4], z[4])), ≥)∧0 ≥ 0)
(31) (x[6] ≥ 0 ⇒ 0 ≥ 0∧0 = 0∧0 = 0∧(UIncreasing(EVAL(-@z(x[4], 1@z), y[4], z[4])), ≥)∧0 ≥ 0)
(32) (x[6] ≥ 0∧z[6] ≥ 0 ⇒ 0 ≥ 0∧0 = 0∧0 = 0∧(UIncreasing(EVAL(-@z(x[4], 1@z), y[4], z[4])), ≥)∧0 ≥ 0)
(33) (x[6] ≥ 0∧z[6] ≥ 0 ⇒ 0 ≥ 0∧0 = 0∧0 = 0∧(UIncreasing(EVAL(-@z(x[4], 1@z), y[4], z[4])), ≥)∧0 ≥ 0)
(34) (EVAL(x[5], y[5], z[5])≥NonInfC∧EVAL(x[5], y[5], z[5])≥COND_EVAL2(&&(&&(>@z(y[5], z[5]), >=@z(z[5], x[5])), >=@z(z[5], y[5])), x[5], y[5], z[5])∧(UIncreasing(COND_EVAL2(&&(&&(>@z(y[5], z[5]), >=@z(z[5], x[5])), >=@z(z[5], y[5])), x[5], y[5], z[5])), ≥))
(35) ((UIncreasing(COND_EVAL2(&&(&&(>@z(y[5], z[5]), >=@z(z[5], x[5])), >=@z(z[5], y[5])), x[5], y[5], z[5])), ≥)∧0 ≥ 0∧1 ≥ 0)
(36) ((UIncreasing(COND_EVAL2(&&(&&(>@z(y[5], z[5]), >=@z(z[5], x[5])), >=@z(z[5], y[5])), x[5], y[5], z[5])), ≥)∧0 ≥ 0∧1 ≥ 0)
(37) ((UIncreasing(COND_EVAL2(&&(&&(>@z(y[5], z[5]), >=@z(z[5], x[5])), >=@z(z[5], y[5])), x[5], y[5], z[5])), ≥)∧1 ≥ 0∧0 ≥ 0)
(38) (1 ≥ 0∧0 = 0∧0 = 0∧0 = 0∧0 ≥ 0∧(UIncreasing(COND_EVAL2(&&(&&(>@z(y[5], z[5]), >=@z(z[5], x[5])), >=@z(z[5], y[5])), x[5], y[5], z[5])), ≥)∧0 = 0∧0 = 0∧0 = 0)
(39) (EVAL(x[6], y[6], z[6])≥NonInfC∧EVAL(x[6], y[6], z[6])≥COND_EVAL4(>@z(x[6], z[6]), x[6], y[6], z[6])∧(UIncreasing(COND_EVAL4(>@z(x[6], z[6]), x[6], y[6], z[6])), ≥))
(40) ((UIncreasing(COND_EVAL4(>@z(x[6], z[6]), x[6], y[6], z[6])), ≥)∧0 ≥ 0∧0 ≥ 0)
(41) ((UIncreasing(COND_EVAL4(>@z(x[6], z[6]), x[6], y[6], z[6])), ≥)∧0 ≥ 0∧0 ≥ 0)
(42) (0 ≥ 0∧0 ≥ 0∧(UIncreasing(COND_EVAL4(>@z(x[6], z[6]), x[6], y[6], z[6])), ≥))
(43) (0 = 0∧0 = 0∧0 = 0∧0 ≥ 0∧0 ≥ 0∧0 = 0∧0 = 0∧(UIncreasing(COND_EVAL4(>@z(x[6], z[6]), x[6], y[6], z[6])), ≥)∧0 = 0)
(44) (z[10]=z[7]∧y[10]=y[7]∧x[10]=x[7]∧&&(&&(>@z(x[10], z[10]), >=@z(z[10], x[10])), >=@z(z[10], y[10]))=TRUE ⇒ COND_EVAL5(TRUE, x[7], y[7], z[7])≥NonInfC∧COND_EVAL5(TRUE, x[7], y[7], z[7])≥EVAL(x[7], y[7], z[7])∧(UIncreasing(EVAL(x[7], y[7], z[7])), ≥))
(45) (>=@z(z[10], y[10])=TRUE∧>@z(x[10], z[10])=TRUE∧>=@z(z[10], x[10])=TRUE ⇒ COND_EVAL5(TRUE, x[10], y[10], z[10])≥NonInfC∧COND_EVAL5(TRUE, x[10], y[10], z[10])≥EVAL(x[10], y[10], z[10])∧(UIncreasing(EVAL(x[7], y[7], z[7])), ≥))
(46) (z[10] + (-1)y[10] ≥ 0∧-1 + x[10] + (-1)z[10] ≥ 0∧z[10] + (-1)x[10] ≥ 0 ⇒ (UIncreasing(EVAL(x[7], y[7], z[7])), ≥)∧0 ≥ 0∧-1 ≥ 0)
(47) (z[10] + (-1)y[10] ≥ 0∧-1 + x[10] + (-1)z[10] ≥ 0∧z[10] + (-1)x[10] ≥ 0 ⇒ (UIncreasing(EVAL(x[7], y[7], z[7])), ≥)∧0 ≥ 0∧-1 ≥ 0)
(48) (z[10] + (-1)y[10] ≥ 0∧z[10] + (-1)x[10] ≥ 0∧-1 + x[10] + (-1)z[10] ≥ 0 ⇒ (UIncreasing(EVAL(x[7], y[7], z[7])), ≥)∧-1 ≥ 0∧0 ≥ 0)
(49) (&&(&&(>@z(x[3], z[3]), >=@z(z[3], x[3])), >@z(y[3], z[3]))=TRUE∧z[3]=z[8]∧x[3]=x[8]∧y[3]=y[8] ⇒ COND_EVAL3(TRUE, x[8], y[8], z[8])≥NonInfC∧COND_EVAL3(TRUE, x[8], y[8], z[8])≥EVAL(x[8], -@z(y[8], 1@z), z[8])∧(UIncreasing(EVAL(x[8], -@z(y[8], 1@z), z[8])), ≥))
(50) (>@z(y[3], z[3])=TRUE∧>@z(x[3], z[3])=TRUE∧>=@z(z[3], x[3])=TRUE ⇒ COND_EVAL3(TRUE, x[3], y[3], z[3])≥NonInfC∧COND_EVAL3(TRUE, x[3], y[3], z[3])≥EVAL(x[3], -@z(y[3], 1@z), z[3])∧(UIncreasing(EVAL(x[8], -@z(y[8], 1@z), z[8])), ≥))
(51) (-1 + y[3] + (-1)z[3] ≥ 0∧-1 + x[3] + (-1)z[3] ≥ 0∧z[3] + (-1)x[3] ≥ 0 ⇒ (UIncreasing(EVAL(x[8], -@z(y[8], 1@z), z[8])), ≥)∧0 ≥ 0∧-1 ≥ 0)
(52) (-1 + y[3] + (-1)z[3] ≥ 0∧-1 + x[3] + (-1)z[3] ≥ 0∧z[3] + (-1)x[3] ≥ 0 ⇒ (UIncreasing(EVAL(x[8], -@z(y[8], 1@z), z[8])), ≥)∧0 ≥ 0∧-1 ≥ 0)
(53) (z[3] + (-1)x[3] ≥ 0∧-1 + x[3] + (-1)z[3] ≥ 0∧-1 + y[3] + (-1)z[3] ≥ 0 ⇒ (UIncreasing(EVAL(x[8], -@z(y[8], 1@z), z[8])), ≥)∧-1 ≥ 0∧0 ≥ 0)
(54) (x[5]=x[9]∧&&(&&(>@z(y[5], z[5]), >=@z(z[5], x[5])), >=@z(z[5], y[5]))=TRUE∧y[5]=y[9]∧z[5]=z[9] ⇒ COND_EVAL2(TRUE, x[9], y[9], z[9])≥NonInfC∧COND_EVAL2(TRUE, x[9], y[9], z[9])≥EVAL(x[9], y[9], z[9])∧(UIncreasing(EVAL(x[9], y[9], z[9])), ≥))
(55) (>=@z(z[5], y[5])=TRUE∧>@z(y[5], z[5])=TRUE∧>=@z(z[5], x[5])=TRUE ⇒ COND_EVAL2(TRUE, x[5], y[5], z[5])≥NonInfC∧COND_EVAL2(TRUE, x[5], y[5], z[5])≥EVAL(x[5], y[5], z[5])∧(UIncreasing(EVAL(x[9], y[9], z[9])), ≥))
(56) (z[5] + (-1)y[5] ≥ 0∧-1 + y[5] + (-1)z[5] ≥ 0∧z[5] + (-1)x[5] ≥ 0 ⇒ (UIncreasing(EVAL(x[9], y[9], z[9])), ≥)∧-2 + (-1)Bound + (-1)z[5] ≥ 0∧-2 ≥ 0)
(57) (z[5] + (-1)y[5] ≥ 0∧-1 + y[5] + (-1)z[5] ≥ 0∧z[5] + (-1)x[5] ≥ 0 ⇒ (UIncreasing(EVAL(x[9], y[9], z[9])), ≥)∧-2 + (-1)Bound + (-1)z[5] ≥ 0∧-2 ≥ 0)
(58) (-1 + y[5] + (-1)z[5] ≥ 0∧z[5] + (-1)x[5] ≥ 0∧z[5] + (-1)y[5] ≥ 0 ⇒ -2 + (-1)Bound + (-1)z[5] ≥ 0∧(UIncreasing(EVAL(x[9], y[9], z[9])), ≥)∧-2 ≥ 0)
(59) (EVAL(x[10], y[10], z[10])≥NonInfC∧EVAL(x[10], y[10], z[10])≥COND_EVAL5(&&(&&(>@z(x[10], z[10]), >=@z(z[10], x[10])), >=@z(z[10], y[10])), x[10], y[10], z[10])∧(UIncreasing(COND_EVAL5(&&(&&(>@z(x[10], z[10]), >=@z(z[10], x[10])), >=@z(z[10], y[10])), x[10], y[10], z[10])), ≥))
(60) ((UIncreasing(COND_EVAL5(&&(&&(>@z(x[10], z[10]), >=@z(z[10], x[10])), >=@z(z[10], y[10])), x[10], y[10], z[10])), ≥)∧0 ≥ 0∧1 ≥ 0)
(61) ((UIncreasing(COND_EVAL5(&&(&&(>@z(x[10], z[10]), >=@z(z[10], x[10])), >=@z(z[10], y[10])), x[10], y[10], z[10])), ≥)∧0 ≥ 0∧1 ≥ 0)
(62) (0 ≥ 0∧1 ≥ 0∧(UIncreasing(COND_EVAL5(&&(&&(>@z(x[10], z[10]), >=@z(z[10], x[10])), >=@z(z[10], y[10])), x[10], y[10], z[10])), ≥))
(63) (0 ≥ 0∧0 = 0∧0 = 0∧0 = 0∧1 ≥ 0∧0 = 0∧(UIncreasing(COND_EVAL5(&&(&&(>@z(x[10], z[10]), >=@z(z[10], x[10])), >=@z(z[10], y[10])), x[10], y[10], z[10])), ≥)∧0 = 0∧0 = 0)
(64) (&&(>@z(y[1], z[1]), >=@z(z[1], x[1]))=TRUE∧y[1]=y[11]∧x[1]=x[11]∧z[1]=z[11] ⇒ COND_EVAL1(TRUE, x[11], y[11], z[11])≥NonInfC∧COND_EVAL1(TRUE, x[11], y[11], z[11])≥EVAL(x[11], -@z(y[11], 1@z), z[11])∧(UIncreasing(EVAL(x[11], -@z(y[11], 1@z), z[11])), ≥))
(65) (>@z(y[1], z[1])=TRUE∧>=@z(z[1], x[1])=TRUE ⇒ COND_EVAL1(TRUE, x[1], y[1], z[1])≥NonInfC∧COND_EVAL1(TRUE, x[1], y[1], z[1])≥EVAL(x[1], -@z(y[1], 1@z), z[1])∧(UIncreasing(EVAL(x[11], -@z(y[11], 1@z), z[11])), ≥))
(66) (-1 + y[1] + (-1)z[1] ≥ 0∧z[1] + (-1)x[1] ≥ 0 ⇒ (UIncreasing(EVAL(x[11], -@z(y[11], 1@z), z[11])), ≥)∧0 ≥ 0∧0 ≥ 0)
(67) (-1 + y[1] + (-1)z[1] ≥ 0∧z[1] + (-1)x[1] ≥ 0 ⇒ (UIncreasing(EVAL(x[11], -@z(y[11], 1@z), z[11])), ≥)∧0 ≥ 0∧0 ≥ 0)
(68) (z[1] + (-1)x[1] ≥ 0∧-1 + y[1] + (-1)z[1] ≥ 0 ⇒ 0 ≥ 0∧0 ≥ 0∧(UIncreasing(EVAL(x[11], -@z(y[11], 1@z), z[11])), ≥))
(69) (x[1] ≥ 0∧-1 + y[1] + (-1)z[1] ≥ 0 ⇒ 0 ≥ 0∧0 ≥ 0∧(UIncreasing(EVAL(x[11], -@z(y[11], 1@z), z[11])), ≥))
(70) (x[1] ≥ 0∧y[1] ≥ 0 ⇒ 0 ≥ 0∧0 ≥ 0∧(UIncreasing(EVAL(x[11], -@z(y[11], 1@z), z[11])), ≥))
(71) (x[1] ≥ 0∧y[1] ≥ 0∧z[1] ≥ 0 ⇒ 0 ≥ 0∧0 ≥ 0∧(UIncreasing(EVAL(x[11], -@z(y[11], 1@z), z[11])), ≥))
(72) (x[1] ≥ 0∧y[1] ≥ 0∧z[1] ≥ 0 ⇒ 0 ≥ 0∧0 ≥ 0∧(UIncreasing(EVAL(x[11], -@z(y[11], 1@z), z[11])), ≥))
POL(-@z(x1, x2)) = x1 + (-1)x2
POL(COND_EVAL2(x1, x2, x3, x4)) = -1 + (-1)x4 + x1
POL(COND_EVAL3(x1, x2, x3, x4)) = -1 + (-1)x4 + x1
POL(TRUE) = -1
POL(&&(x1, x2)) = -1
POL(EVAL(x1, x2, x3)) = -1 + (-1)x3
POL(FALSE) = -1
POL(>@z(x1, x2)) = -1
POL(COND_EVAL5(x1, x2, x3, x4)) = -1 + (-1)x4 + x1
POL(>=@z(x1, x2)) = -1
POL(COND_EVAL1(x1, x2, x3, x4)) = -1 + (-1)x4
POL(COND_EVAL(x1, x2, x3, x4)) = -1 + (-1)x4
POL(COND_EVAL4(x1, x2, x3, x4)) = -1 + (-1)x4
POL(1@z) = 1
POL(undefined) = -1
COND_EVAL2(TRUE, x[9], y[9], z[9]) → EVAL(x[9], y[9], z[9])
COND_EVAL2(TRUE, x[9], y[9], z[9]) → EVAL(x[9], y[9], z[9])
COND_EVAL(TRUE, x[0], y[0], z[0]) → EVAL(-@z(x[0], 1@z), y[0], z[0])
EVAL(x[1], y[1], z[1]) → COND_EVAL1(&&(>@z(y[1], z[1]), >=@z(z[1], x[1])), x[1], y[1], z[1])
EVAL(x[2], y[2], z[2]) → COND_EVAL(&&(>@z(y[2], z[2]), >@z(x[2], z[2])), x[2], y[2], z[2])
EVAL(x[3], y[3], z[3]) → COND_EVAL3(&&(&&(>@z(x[3], z[3]), >=@z(z[3], x[3])), >@z(y[3], z[3])), x[3], y[3], z[3])
COND_EVAL4(TRUE, x[4], y[4], z[4]) → EVAL(-@z(x[4], 1@z), y[4], z[4])
EVAL(x[5], y[5], z[5]) → COND_EVAL2(&&(&&(>@z(y[5], z[5]), >=@z(z[5], x[5])), >=@z(z[5], y[5])), x[5], y[5], z[5])
EVAL(x[6], y[6], z[6]) → COND_EVAL4(>@z(x[6], z[6]), x[6], y[6], z[6])
COND_EVAL5(TRUE, x[7], y[7], z[7]) → EVAL(x[7], y[7], z[7])
COND_EVAL3(TRUE, x[8], y[8], z[8]) → EVAL(x[8], -@z(y[8], 1@z), z[8])
EVAL(x[10], y[10], z[10]) → COND_EVAL5(&&(&&(>@z(x[10], z[10]), >=@z(z[10], x[10])), >=@z(z[10], y[10])), x[10], y[10], z[10])
COND_EVAL1(TRUE, x[11], y[11], z[11]) → EVAL(x[11], -@z(y[11], 1@z), z[11])
&&(FALSE, FALSE)1 → FALSE1
-@z1 ↔
&&(TRUE, TRUE)1 → TRUE1
&&(TRUE, FALSE)1 ↔ FALSE1
&&(FALSE, TRUE)1 ↔ FALSE1
↳ ITRS
↳ ITRStoIDPProof
↳ IDP
↳ UsableRulesProof
↳ IDP
↳ IDPNonInfProof
↳ IDP
↳ IDependencyGraphProof
z
(0) -> (6), if ((y[0] →* y[6])∧(z[0] →* z[6])∧(-@z(x[0], 1@z) →* x[6]))
(6) -> (4), if ((z[6] →* z[4])∧(x[6] →* x[4])∧(y[6] →* y[4])∧(>@z(x[6], z[6]) →* TRUE))
(0) -> (3), if ((y[0] →* y[3])∧(z[0] →* z[3])∧(-@z(x[0], 1@z) →* x[3]))
(7) -> (3), if ((y[7] →* y[3])∧(z[7] →* z[3])∧(x[7] →* x[3]))
(8) -> (1), if ((-@z(y[8], 1@z) →* y[1])∧(z[8] →* z[1])∧(x[8] →* x[1]))
(2) -> (0), if ((z[2] →* z[0])∧(x[2] →* x[0])∧(y[2] →* y[0])∧(&&(>@z(y[2], z[2]), >@z(x[2], z[2])) →* TRUE))
(3) -> (8), if ((z[3] →* z[8])∧(x[3] →* x[8])∧(y[3] →* y[8])∧(&&(&&(>@z(x[3], z[3]), >=@z(z[3], x[3])), >@z(y[3], z[3])) →* TRUE))
(11) -> (10), if ((-@z(y[11], 1@z) →* y[10])∧(z[11] →* z[10])∧(x[11] →* x[10]))
(4) -> (10), if ((y[4] →* y[10])∧(z[4] →* z[10])∧(-@z(x[4], 1@z) →* x[10]))
(11) -> (6), if ((-@z(y[11], 1@z) →* y[6])∧(z[11] →* z[6])∧(x[11] →* x[6]))
(8) -> (5), if ((-@z(y[8], 1@z) →* y[5])∧(z[8] →* z[5])∧(x[8] →* x[5]))
(7) -> (5), if ((y[7] →* y[5])∧(z[7] →* z[5])∧(x[7] →* x[5]))
(4) -> (3), if ((y[4] →* y[3])∧(z[4] →* z[3])∧(-@z(x[4], 1@z) →* x[3]))
(7) -> (6), if ((y[7] →* y[6])∧(z[7] →* z[6])∧(x[7] →* x[6]))
(1) -> (11), if ((z[1] →* z[11])∧(x[1] →* x[11])∧(y[1] →* y[11])∧(&&(>@z(y[1], z[1]), >=@z(z[1], x[1])) →* TRUE))
(0) -> (1), if ((y[0] →* y[1])∧(z[0] →* z[1])∧(-@z(x[0], 1@z) →* x[1]))
(10) -> (7), if ((z[10] →* z[7])∧(x[10] →* x[7])∧(y[10] →* y[7])∧(&&(&&(>@z(x[10], z[10]), >=@z(z[10], x[10])), >=@z(z[10], y[10])) →* TRUE))
(11) -> (2), if ((-@z(y[11], 1@z) →* y[2])∧(z[11] →* z[2])∧(x[11] →* x[2]))
(0) -> (5), if ((y[0] →* y[5])∧(z[0] →* z[5])∧(-@z(x[0], 1@z) →* x[5]))
(4) -> (6), if ((y[4] →* y[6])∧(z[4] →* z[6])∧(-@z(x[4], 1@z) →* x[6]))
(8) -> (6), if ((-@z(y[8], 1@z) →* y[6])∧(z[8] →* z[6])∧(x[8] →* x[6]))
(8) -> (10), if ((-@z(y[8], 1@z) →* y[10])∧(z[8] →* z[10])∧(x[8] →* x[10]))
(11) -> (3), if ((-@z(y[11], 1@z) →* y[3])∧(z[11] →* z[3])∧(x[11] →* x[3]))
(7) -> (2), if ((y[7] →* y[2])∧(z[7] →* z[2])∧(x[7] →* x[2]))
(7) -> (10), if ((y[7] →* y[10])∧(z[7] →* z[10])∧(x[7] →* x[10]))
(8) -> (2), if ((-@z(y[8], 1@z) →* y[2])∧(z[8] →* z[2])∧(x[8] →* x[2]))
(0) -> (2), if ((y[0] →* y[2])∧(z[0] →* z[2])∧(-@z(x[0], 1@z) →* x[2]))
(0) -> (10), if ((y[0] →* y[10])∧(z[0] →* z[10])∧(-@z(x[0], 1@z) →* x[10]))
(4) -> (1), if ((y[4] →* y[1])∧(z[4] →* z[1])∧(-@z(x[4], 1@z) →* x[1]))
(8) -> (3), if ((-@z(y[8], 1@z) →* y[3])∧(z[8] →* z[3])∧(x[8] →* x[3]))
(4) -> (2), if ((y[4] →* y[2])∧(z[4] →* z[2])∧(-@z(x[4], 1@z) →* x[2]))
(11) -> (5), if ((-@z(y[11], 1@z) →* y[5])∧(z[11] →* z[5])∧(x[11] →* x[5]))
(7) -> (1), if ((y[7] →* y[1])∧(z[7] →* z[1])∧(x[7] →* x[1]))
(11) -> (1), if ((-@z(y[11], 1@z) →* y[1])∧(z[11] →* z[1])∧(x[11] →* x[1]))
(4) -> (5), if ((y[4] →* y[5])∧(z[4] →* z[5])∧(-@z(x[4], 1@z) →* x[5]))
eval(x0, x1, x2)
Cond_eval5(TRUE, x0, x1, x2)
Cond_eval2(TRUE, x0, x1, x2)
Cond_eval4(TRUE, x0, x1, x2)
Cond_eval(TRUE, x0, x1, x2)
Cond_eval1(TRUE, x0, x1, x2)
Cond_eval3(TRUE, x0, x1, x2)
↳ ITRS
↳ ITRStoIDPProof
↳ IDP
↳ UsableRulesProof
↳ IDP
↳ IDPNonInfProof
↳ IDP
↳ IDependencyGraphProof
↳ IDP
↳ IDPNonInfProof
z
(0) -> (6), if ((y[0] →* y[6])∧(z[0] →* z[6])∧(-@z(x[0], 1@z) →* x[6]))
(6) -> (4), if ((z[6] →* z[4])∧(x[6] →* x[4])∧(y[6] →* y[4])∧(>@z(x[6], z[6]) →* TRUE))
(0) -> (3), if ((y[0] →* y[3])∧(z[0] →* z[3])∧(-@z(x[0], 1@z) →* x[3]))
(7) -> (3), if ((y[7] →* y[3])∧(z[7] →* z[3])∧(x[7] →* x[3]))
(8) -> (1), if ((-@z(y[8], 1@z) →* y[1])∧(z[8] →* z[1])∧(x[8] →* x[1]))
(3) -> (8), if ((z[3] →* z[8])∧(x[3] →* x[8])∧(y[3] →* y[8])∧(&&(&&(>@z(x[3], z[3]), >=@z(z[3], x[3])), >@z(y[3], z[3])) →* TRUE))
(2) -> (0), if ((z[2] →* z[0])∧(x[2] →* x[0])∧(y[2] →* y[0])∧(&&(>@z(y[2], z[2]), >@z(x[2], z[2])) →* TRUE))
(11) -> (10), if ((-@z(y[11], 1@z) →* y[10])∧(z[11] →* z[10])∧(x[11] →* x[10]))
(4) -> (10), if ((y[4] →* y[10])∧(z[4] →* z[10])∧(-@z(x[4], 1@z) →* x[10]))
(11) -> (6), if ((-@z(y[11], 1@z) →* y[6])∧(z[11] →* z[6])∧(x[11] →* x[6]))
(4) -> (3), if ((y[4] →* y[3])∧(z[4] →* z[3])∧(-@z(x[4], 1@z) →* x[3]))
(7) -> (6), if ((y[7] →* y[6])∧(z[7] →* z[6])∧(x[7] →* x[6]))
(1) -> (11), if ((z[1] →* z[11])∧(x[1] →* x[11])∧(y[1] →* y[11])∧(&&(>@z(y[1], z[1]), >=@z(z[1], x[1])) →* TRUE))
(0) -> (1), if ((y[0] →* y[1])∧(z[0] →* z[1])∧(-@z(x[0], 1@z) →* x[1]))
(10) -> (7), if ((z[10] →* z[7])∧(x[10] →* x[7])∧(y[10] →* y[7])∧(&&(&&(>@z(x[10], z[10]), >=@z(z[10], x[10])), >=@z(z[10], y[10])) →* TRUE))
(11) -> (2), if ((-@z(y[11], 1@z) →* y[2])∧(z[11] →* z[2])∧(x[11] →* x[2]))
(4) -> (6), if ((y[4] →* y[6])∧(z[4] →* z[6])∧(-@z(x[4], 1@z) →* x[6]))
(8) -> (10), if ((-@z(y[8], 1@z) →* y[10])∧(z[8] →* z[10])∧(x[8] →* x[10]))
(8) -> (6), if ((-@z(y[8], 1@z) →* y[6])∧(z[8] →* z[6])∧(x[8] →* x[6]))
(11) -> (3), if ((-@z(y[11], 1@z) →* y[3])∧(z[11] →* z[3])∧(x[11] →* x[3]))
(7) -> (10), if ((y[7] →* y[10])∧(z[7] →* z[10])∧(x[7] →* x[10]))
(7) -> (2), if ((y[7] →* y[2])∧(z[7] →* z[2])∧(x[7] →* x[2]))
(0) -> (2), if ((y[0] →* y[2])∧(z[0] →* z[2])∧(-@z(x[0], 1@z) →* x[2]))
(8) -> (2), if ((-@z(y[8], 1@z) →* y[2])∧(z[8] →* z[2])∧(x[8] →* x[2]))
(0) -> (10), if ((y[0] →* y[10])∧(z[0] →* z[10])∧(-@z(x[0], 1@z) →* x[10]))
(4) -> (1), if ((y[4] →* y[1])∧(z[4] →* z[1])∧(-@z(x[4], 1@z) →* x[1]))
(8) -> (3), if ((-@z(y[8], 1@z) →* y[3])∧(z[8] →* z[3])∧(x[8] →* x[3]))
(4) -> (2), if ((y[4] →* y[2])∧(z[4] →* z[2])∧(-@z(x[4], 1@z) →* x[2]))
(7) -> (1), if ((y[7] →* y[1])∧(z[7] →* z[1])∧(x[7] →* x[1]))
(11) -> (1), if ((-@z(y[11], 1@z) →* y[1])∧(z[11] →* z[1])∧(x[11] →* x[1]))
eval(x0, x1, x2)
Cond_eval5(TRUE, x0, x1, x2)
Cond_eval2(TRUE, x0, x1, x2)
Cond_eval4(TRUE, x0, x1, x2)
Cond_eval(TRUE, x0, x1, x2)
Cond_eval1(TRUE, x0, x1, x2)
Cond_eval3(TRUE, x0, x1, x2)
(1) (&&(>@z(y[1], z[1]), >=@z(z[1], x[1]))=TRUE∧y[1]=y[11]∧x[1]=x[11]∧z[1]=z[11] ⇒ COND_EVAL1(TRUE, x[11], y[11], z[11])≥NonInfC∧COND_EVAL1(TRUE, x[11], y[11], z[11])≥EVAL(x[11], -@z(y[11], 1@z), z[11])∧(UIncreasing(EVAL(x[11], -@z(y[11], 1@z), z[11])), ≥))
(2) (>@z(y[1], z[1])=TRUE∧>=@z(z[1], x[1])=TRUE ⇒ COND_EVAL1(TRUE, x[1], y[1], z[1])≥NonInfC∧COND_EVAL1(TRUE, x[1], y[1], z[1])≥EVAL(x[1], -@z(y[1], 1@z), z[1])∧(UIncreasing(EVAL(x[11], -@z(y[11], 1@z), z[11])), ≥))
(3) (-1 + y[1] + (-1)z[1] ≥ 0∧z[1] + (-1)x[1] ≥ 0 ⇒ (UIncreasing(EVAL(x[11], -@z(y[11], 1@z), z[11])), ≥)∧-1 + (-1)Bound + (-1)z[1] + y[1] ≥ 0∧1 ≥ 0)
(4) (-1 + y[1] + (-1)z[1] ≥ 0∧z[1] + (-1)x[1] ≥ 0 ⇒ (UIncreasing(EVAL(x[11], -@z(y[11], 1@z), z[11])), ≥)∧-1 + (-1)Bound + (-1)z[1] + y[1] ≥ 0∧1 ≥ 0)
(5) (z[1] + (-1)x[1] ≥ 0∧-1 + y[1] + (-1)z[1] ≥ 0 ⇒ 1 ≥ 0∧(UIncreasing(EVAL(x[11], -@z(y[11], 1@z), z[11])), ≥)∧-1 + (-1)Bound + (-1)z[1] + y[1] ≥ 0)
(6) (x[1] ≥ 0∧-1 + y[1] + (-1)z[1] ≥ 0 ⇒ 1 ≥ 0∧(UIncreasing(EVAL(x[11], -@z(y[11], 1@z), z[11])), ≥)∧-1 + (-1)Bound + (-1)z[1] + y[1] ≥ 0)
(7) (x[1] ≥ 0∧y[1] ≥ 0 ⇒ 1 ≥ 0∧(UIncreasing(EVAL(x[11], -@z(y[11], 1@z), z[11])), ≥)∧(-1)Bound + y[1] ≥ 0)
(8) (x[1] ≥ 0∧y[1] ≥ 0∧z[1] ≥ 0 ⇒ 1 ≥ 0∧(UIncreasing(EVAL(x[11], -@z(y[11], 1@z), z[11])), ≥)∧(-1)Bound + y[1] ≥ 0)
(9) (x[1] ≥ 0∧y[1] ≥ 0∧z[1] ≥ 0 ⇒ 1 ≥ 0∧(UIncreasing(EVAL(x[11], -@z(y[11], 1@z), z[11])), ≥)∧(-1)Bound + y[1] ≥ 0)
(10) (EVAL(x[1], y[1], z[1])≥NonInfC∧EVAL(x[1], y[1], z[1])≥COND_EVAL1(&&(>@z(y[1], z[1]), >=@z(z[1], x[1])), x[1], y[1], z[1])∧(UIncreasing(COND_EVAL1(&&(>@z(y[1], z[1]), >=@z(z[1], x[1])), x[1], y[1], z[1])), ≥))
(11) ((UIncreasing(COND_EVAL1(&&(>@z(y[1], z[1]), >=@z(z[1], x[1])), x[1], y[1], z[1])), ≥)∧0 ≥ 0∧0 ≥ 0)
(12) ((UIncreasing(COND_EVAL1(&&(>@z(y[1], z[1]), >=@z(z[1], x[1])), x[1], y[1], z[1])), ≥)∧0 ≥ 0∧0 ≥ 0)
(13) (0 ≥ 0∧0 ≥ 0∧(UIncreasing(COND_EVAL1(&&(>@z(y[1], z[1]), >=@z(z[1], x[1])), x[1], y[1], z[1])), ≥))
(14) (0 = 0∧0 = 0∧0 ≥ 0∧0 = 0∧0 ≥ 0∧(UIncreasing(COND_EVAL1(&&(>@z(y[1], z[1]), >=@z(z[1], x[1])), x[1], y[1], z[1])), ≥)∧0 = 0∧0 = 0∧0 = 0)
(15) (z[2]=z[0]∧x[2]=x[0]∧&&(>@z(y[2], z[2]), >@z(x[2], z[2]))=TRUE∧y[2]=y[0] ⇒ COND_EVAL(TRUE, x[0], y[0], z[0])≥NonInfC∧COND_EVAL(TRUE, x[0], y[0], z[0])≥EVAL(-@z(x[0], 1@z), y[0], z[0])∧(UIncreasing(EVAL(-@z(x[0], 1@z), y[0], z[0])), ≥))
(16) (>@z(y[2], z[2])=TRUE∧>@z(x[2], z[2])=TRUE ⇒ COND_EVAL(TRUE, x[2], y[2], z[2])≥NonInfC∧COND_EVAL(TRUE, x[2], y[2], z[2])≥EVAL(-@z(x[2], 1@z), y[2], z[2])∧(UIncreasing(EVAL(-@z(x[0], 1@z), y[0], z[0])), ≥))
(17) (y[2] + -1 + (-1)z[2] ≥ 0∧-1 + x[2] + (-1)z[2] ≥ 0 ⇒ (UIncreasing(EVAL(-@z(x[0], 1@z), y[0], z[0])), ≥)∧0 ≥ 0∧0 ≥ 0)
(18) (y[2] + -1 + (-1)z[2] ≥ 0∧-1 + x[2] + (-1)z[2] ≥ 0 ⇒ (UIncreasing(EVAL(-@z(x[0], 1@z), y[0], z[0])), ≥)∧0 ≥ 0∧0 ≥ 0)
(19) (y[2] + -1 + (-1)z[2] ≥ 0∧-1 + x[2] + (-1)z[2] ≥ 0 ⇒ 0 ≥ 0∧0 ≥ 0∧(UIncreasing(EVAL(-@z(x[0], 1@z), y[0], z[0])), ≥))
(20) (y[2] + -1 + (-1)z[2] ≥ 0∧x[2] ≥ 0 ⇒ 0 ≥ 0∧0 ≥ 0∧(UIncreasing(EVAL(-@z(x[0], 1@z), y[0], z[0])), ≥))
(21) (z[2] ≥ 0∧x[2] ≥ 0 ⇒ 0 ≥ 0∧0 ≥ 0∧(UIncreasing(EVAL(-@z(x[0], 1@z), y[0], z[0])), ≥))
(22) (z[2] ≥ 0∧x[2] ≥ 0∧y[2] ≥ 0 ⇒ 0 ≥ 0∧0 ≥ 0∧(UIncreasing(EVAL(-@z(x[0], 1@z), y[0], z[0])), ≥))
(23) (z[2] ≥ 0∧x[2] ≥ 0∧y[2] ≥ 0 ⇒ 0 ≥ 0∧0 ≥ 0∧(UIncreasing(EVAL(-@z(x[0], 1@z), y[0], z[0])), ≥))
(24) (EVAL(x[2], y[2], z[2])≥NonInfC∧EVAL(x[2], y[2], z[2])≥COND_EVAL(&&(>@z(y[2], z[2]), >@z(x[2], z[2])), x[2], y[2], z[2])∧(UIncreasing(COND_EVAL(&&(>@z(y[2], z[2]), >@z(x[2], z[2])), x[2], y[2], z[2])), ≥))
(25) ((UIncreasing(COND_EVAL(&&(>@z(y[2], z[2]), >@z(x[2], z[2])), x[2], y[2], z[2])), ≥)∧0 ≥ 0∧0 ≥ 0)
(26) ((UIncreasing(COND_EVAL(&&(>@z(y[2], z[2]), >@z(x[2], z[2])), x[2], y[2], z[2])), ≥)∧0 ≥ 0∧0 ≥ 0)
(27) (0 ≥ 0∧(UIncreasing(COND_EVAL(&&(>@z(y[2], z[2]), >@z(x[2], z[2])), x[2], y[2], z[2])), ≥)∧0 ≥ 0)
(28) (0 = 0∧0 ≥ 0∧0 = 0∧0 = 0∧0 = 0∧0 = 0∧0 ≥ 0∧0 = 0∧(UIncreasing(COND_EVAL(&&(>@z(y[2], z[2]), >@z(x[2], z[2])), x[2], y[2], z[2])), ≥))
(29) (&&(&&(>@z(x[3], z[3]), >=@z(z[3], x[3])), >@z(y[3], z[3]))=TRUE∧z[3]=z[8]∧x[3]=x[8]∧y[3]=y[8] ⇒ COND_EVAL3(TRUE, x[8], y[8], z[8])≥NonInfC∧COND_EVAL3(TRUE, x[8], y[8], z[8])≥EVAL(x[8], -@z(y[8], 1@z), z[8])∧(UIncreasing(EVAL(x[8], -@z(y[8], 1@z), z[8])), ≥))
(30) (>@z(y[3], z[3])=TRUE∧>@z(x[3], z[3])=TRUE∧>=@z(z[3], x[3])=TRUE ⇒ COND_EVAL3(TRUE, x[3], y[3], z[3])≥NonInfC∧COND_EVAL3(TRUE, x[3], y[3], z[3])≥EVAL(x[3], -@z(y[3], 1@z), z[3])∧(UIncreasing(EVAL(x[8], -@z(y[8], 1@z), z[8])), ≥))
(31) (-1 + y[3] + (-1)z[3] ≥ 0∧-1 + x[3] + (-1)z[3] ≥ 0∧z[3] + (-1)x[3] ≥ 0 ⇒ (UIncreasing(EVAL(x[8], -@z(y[8], 1@z), z[8])), ≥)∧-1 + (-1)Bound + (-1)z[3] + y[3] ≥ 0∧1 ≥ 0)
(32) (-1 + y[3] + (-1)z[3] ≥ 0∧-1 + x[3] + (-1)z[3] ≥ 0∧z[3] + (-1)x[3] ≥ 0 ⇒ (UIncreasing(EVAL(x[8], -@z(y[8], 1@z), z[8])), ≥)∧-1 + (-1)Bound + (-1)z[3] + y[3] ≥ 0∧1 ≥ 0)
(33) (-1 + y[3] + (-1)z[3] ≥ 0∧-1 + x[3] + (-1)z[3] ≥ 0∧z[3] + (-1)x[3] ≥ 0 ⇒ (UIncreasing(EVAL(x[8], -@z(y[8], 1@z), z[8])), ≥)∧1 ≥ 0∧-1 + (-1)Bound + (-1)z[3] + y[3] ≥ 0)
(34) (EVAL(x[3], y[3], z[3])≥NonInfC∧EVAL(x[3], y[3], z[3])≥COND_EVAL3(&&(&&(>@z(x[3], z[3]), >=@z(z[3], x[3])), >@z(y[3], z[3])), x[3], y[3], z[3])∧(UIncreasing(COND_EVAL3(&&(&&(>@z(x[3], z[3]), >=@z(z[3], x[3])), >@z(y[3], z[3])), x[3], y[3], z[3])), ≥))
(35) ((UIncreasing(COND_EVAL3(&&(&&(>@z(x[3], z[3]), >=@z(z[3], x[3])), >@z(y[3], z[3])), x[3], y[3], z[3])), ≥)∧0 ≥ 0∧0 ≥ 0)
(36) ((UIncreasing(COND_EVAL3(&&(&&(>@z(x[3], z[3]), >=@z(z[3], x[3])), >@z(y[3], z[3])), x[3], y[3], z[3])), ≥)∧0 ≥ 0∧0 ≥ 0)
(37) (0 ≥ 0∧0 ≥ 0∧(UIncreasing(COND_EVAL3(&&(&&(>@z(x[3], z[3]), >=@z(z[3], x[3])), >@z(y[3], z[3])), x[3], y[3], z[3])), ≥))
(38) (0 ≥ 0∧0 = 0∧0 = 0∧0 = 0∧0 = 0∧0 = 0∧0 = 0∧(UIncreasing(COND_EVAL3(&&(&&(>@z(x[3], z[3]), >=@z(z[3], x[3])), >@z(y[3], z[3])), x[3], y[3], z[3])), ≥)∧0 ≥ 0)
(39) (z[10]=z[7]∧y[10]=y[7]∧x[10]=x[7]∧&&(&&(>@z(x[10], z[10]), >=@z(z[10], x[10])), >=@z(z[10], y[10]))=TRUE ⇒ COND_EVAL5(TRUE, x[7], y[7], z[7])≥NonInfC∧COND_EVAL5(TRUE, x[7], y[7], z[7])≥EVAL(x[7], y[7], z[7])∧(UIncreasing(EVAL(x[7], y[7], z[7])), ≥))
(40) (>=@z(z[10], y[10])=TRUE∧>@z(x[10], z[10])=TRUE∧>=@z(z[10], x[10])=TRUE ⇒ COND_EVAL5(TRUE, x[10], y[10], z[10])≥NonInfC∧COND_EVAL5(TRUE, x[10], y[10], z[10])≥EVAL(x[10], y[10], z[10])∧(UIncreasing(EVAL(x[7], y[7], z[7])), ≥))
(41) (z[10] + (-1)y[10] ≥ 0∧-1 + x[10] + (-1)z[10] ≥ 0∧z[10] + (-1)x[10] ≥ 0 ⇒ (UIncreasing(EVAL(x[7], y[7], z[7])), ≥)∧0 ≥ 0∧-1 ≥ 0)
(42) (z[10] + (-1)y[10] ≥ 0∧-1 + x[10] + (-1)z[10] ≥ 0∧z[10] + (-1)x[10] ≥ 0 ⇒ (UIncreasing(EVAL(x[7], y[7], z[7])), ≥)∧0 ≥ 0∧-1 ≥ 0)
(43) (-1 + x[10] + (-1)z[10] ≥ 0∧z[10] + (-1)y[10] ≥ 0∧z[10] + (-1)x[10] ≥ 0 ⇒ (UIncreasing(EVAL(x[7], y[7], z[7])), ≥)∧-1 ≥ 0∧0 ≥ 0)
(44) (EVAL(x[10], y[10], z[10])≥NonInfC∧EVAL(x[10], y[10], z[10])≥COND_EVAL5(&&(&&(>@z(x[10], z[10]), >=@z(z[10], x[10])), >=@z(z[10], y[10])), x[10], y[10], z[10])∧(UIncreasing(COND_EVAL5(&&(&&(>@z(x[10], z[10]), >=@z(z[10], x[10])), >=@z(z[10], y[10])), x[10], y[10], z[10])), ≥))
(45) ((UIncreasing(COND_EVAL5(&&(&&(>@z(x[10], z[10]), >=@z(z[10], x[10])), >=@z(z[10], y[10])), x[10], y[10], z[10])), ≥)∧0 ≥ 0∧0 ≥ 0)
(46) ((UIncreasing(COND_EVAL5(&&(&&(>@z(x[10], z[10]), >=@z(z[10], x[10])), >=@z(z[10], y[10])), x[10], y[10], z[10])), ≥)∧0 ≥ 0∧0 ≥ 0)
(47) (0 ≥ 0∧(UIncreasing(COND_EVAL5(&&(&&(>@z(x[10], z[10]), >=@z(z[10], x[10])), >=@z(z[10], y[10])), x[10], y[10], z[10])), ≥)∧0 ≥ 0)
(48) (0 = 0∧0 = 0∧0 = 0∧0 = 0∧0 ≥ 0∧(UIncreasing(COND_EVAL5(&&(&&(>@z(x[10], z[10]), >=@z(z[10], x[10])), >=@z(z[10], y[10])), x[10], y[10], z[10])), ≥)∧0 = 0∧0 = 0∧0 ≥ 0)
(49) (y[6]=y[4]∧x[6]=x[4]∧>@z(x[6], z[6])=TRUE∧z[6]=z[4] ⇒ COND_EVAL4(TRUE, x[4], y[4], z[4])≥NonInfC∧COND_EVAL4(TRUE, x[4], y[4], z[4])≥EVAL(-@z(x[4], 1@z), y[4], z[4])∧(UIncreasing(EVAL(-@z(x[4], 1@z), y[4], z[4])), ≥))
(50) (>@z(x[6], z[6])=TRUE ⇒ COND_EVAL4(TRUE, x[6], y[6], z[6])≥NonInfC∧COND_EVAL4(TRUE, x[6], y[6], z[6])≥EVAL(-@z(x[6], 1@z), y[6], z[6])∧(UIncreasing(EVAL(-@z(x[4], 1@z), y[4], z[4])), ≥))
(51) (x[6] + -1 + (-1)z[6] ≥ 0 ⇒ (UIncreasing(EVAL(-@z(x[4], 1@z), y[4], z[4])), ≥)∧0 ≥ 0∧0 ≥ 0)
(52) (x[6] + -1 + (-1)z[6] ≥ 0 ⇒ (UIncreasing(EVAL(-@z(x[4], 1@z), y[4], z[4])), ≥)∧0 ≥ 0∧0 ≥ 0)
(53) (x[6] + -1 + (-1)z[6] ≥ 0 ⇒ 0 ≥ 0∧0 ≥ 0∧(UIncreasing(EVAL(-@z(x[4], 1@z), y[4], z[4])), ≥))
(54) (x[6] + -1 + (-1)z[6] ≥ 0 ⇒ 0 ≥ 0∧0 = 0∧0 ≥ 0∧0 = 0∧(UIncreasing(EVAL(-@z(x[4], 1@z), y[4], z[4])), ≥))
(55) (x[6] ≥ 0 ⇒ 0 ≥ 0∧0 = 0∧0 ≥ 0∧0 = 0∧(UIncreasing(EVAL(-@z(x[4], 1@z), y[4], z[4])), ≥))
(56) (x[6] ≥ 0∧z[6] ≥ 0 ⇒ 0 ≥ 0∧0 = 0∧0 ≥ 0∧0 = 0∧(UIncreasing(EVAL(-@z(x[4], 1@z), y[4], z[4])), ≥))
(57) (x[6] ≥ 0∧z[6] ≥ 0 ⇒ 0 ≥ 0∧0 = 0∧0 ≥ 0∧0 = 0∧(UIncreasing(EVAL(-@z(x[4], 1@z), y[4], z[4])), ≥))
(58) (EVAL(x[6], y[6], z[6])≥NonInfC∧EVAL(x[6], y[6], z[6])≥COND_EVAL4(>@z(x[6], z[6]), x[6], y[6], z[6])∧(UIncreasing(COND_EVAL4(>@z(x[6], z[6]), x[6], y[6], z[6])), ≥))
(59) ((UIncreasing(COND_EVAL4(>@z(x[6], z[6]), x[6], y[6], z[6])), ≥)∧0 ≥ 0∧0 ≥ 0)
(60) ((UIncreasing(COND_EVAL4(>@z(x[6], z[6]), x[6], y[6], z[6])), ≥)∧0 ≥ 0∧0 ≥ 0)
(61) (0 ≥ 0∧0 ≥ 0∧(UIncreasing(COND_EVAL4(>@z(x[6], z[6]), x[6], y[6], z[6])), ≥))
(62) (0 = 0∧0 ≥ 0∧0 ≥ 0∧0 = 0∧0 = 0∧0 = 0∧0 = 0∧0 = 0∧(UIncreasing(COND_EVAL4(>@z(x[6], z[6]), x[6], y[6], z[6])), ≥))
POL(-@z(x1, x2)) = x1 + (-1)x2
POL(COND_EVAL3(x1, x2, x3, x4)) = -1 + (-1)x4 + x3
POL(TRUE) = 0
POL(&&(x1, x2)) = -1
POL(EVAL(x1, x2, x3)) = -1 + (-1)x3 + x2
POL(FALSE) = 0
POL(>@z(x1, x2)) = -1
POL(COND_EVAL5(x1, x2, x3, x4)) = -1 + (-1)x4 + x3
POL(>=@z(x1, x2)) = -1
POL(COND_EVAL1(x1, x2, x3, x4)) = -1 + (-1)x4 + x3
POL(COND_EVAL(x1, x2, x3, x4)) = -1 + (-1)x4 + x3
POL(COND_EVAL4(x1, x2, x3, x4)) = -1 + (-1)x4 + x3
POL(1@z) = 1
POL(undefined) = -1
COND_EVAL5(TRUE, x[7], y[7], z[7]) → EVAL(x[7], y[7], z[7])
COND_EVAL1(TRUE, x[11], y[11], z[11]) → EVAL(x[11], -@z(y[11], 1@z), z[11])
COND_EVAL3(TRUE, x[8], y[8], z[8]) → EVAL(x[8], -@z(y[8], 1@z), z[8])
COND_EVAL1(TRUE, x[11], y[11], z[11]) → EVAL(x[11], -@z(y[11], 1@z), z[11])
EVAL(x[1], y[1], z[1]) → COND_EVAL1(&&(>@z(y[1], z[1]), >=@z(z[1], x[1])), x[1], y[1], z[1])
COND_EVAL(TRUE, x[0], y[0], z[0]) → EVAL(-@z(x[0], 1@z), y[0], z[0])
EVAL(x[2], y[2], z[2]) → COND_EVAL(&&(>@z(y[2], z[2]), >@z(x[2], z[2])), x[2], y[2], z[2])
COND_EVAL3(TRUE, x[8], y[8], z[8]) → EVAL(x[8], -@z(y[8], 1@z), z[8])
EVAL(x[3], y[3], z[3]) → COND_EVAL3(&&(&&(>@z(x[3], z[3]), >=@z(z[3], x[3])), >@z(y[3], z[3])), x[3], y[3], z[3])
EVAL(x[10], y[10], z[10]) → COND_EVAL5(&&(&&(>@z(x[10], z[10]), >=@z(z[10], x[10])), >=@z(z[10], y[10])), x[10], y[10], z[10])
COND_EVAL4(TRUE, x[4], y[4], z[4]) → EVAL(-@z(x[4], 1@z), y[4], z[4])
EVAL(x[6], y[6], z[6]) → COND_EVAL4(>@z(x[6], z[6]), x[6], y[6], z[6])
FALSE1 → &&(FALSE, FALSE)1
-@z1 ↔
TRUE1 → &&(TRUE, TRUE)1
FALSE1 → &&(FALSE, TRUE)1
FALSE1 → &&(TRUE, FALSE)1
↳ ITRS
↳ ITRStoIDPProof
↳ IDP
↳ UsableRulesProof
↳ IDP
↳ IDPNonInfProof
↳ IDP
↳ IDependencyGraphProof
↳ IDP
↳ IDPNonInfProof
↳ AND
↳ IDP
↳ IDependencyGraphProof
↳ IDP
z
(4) -> (6), if ((y[4] →* y[6])∧(z[4] →* z[6])∧(-@z(x[4], 1@z) →* x[6]))
(0) -> (6), if ((y[0] →* y[6])∧(z[0] →* z[6])∧(-@z(x[0], 1@z) →* x[6]))
(6) -> (4), if ((z[6] →* z[4])∧(x[6] →* x[4])∧(y[6] →* y[4])∧(>@z(x[6], z[6]) →* TRUE))
(0) -> (3), if ((y[0] →* y[3])∧(z[0] →* z[3])∧(-@z(x[0], 1@z) →* x[3]))
(7) -> (2), if ((y[7] →* y[2])∧(z[7] →* z[2])∧(x[7] →* x[2]))
(7) -> (10), if ((y[7] →* y[10])∧(z[7] →* z[10])∧(x[7] →* x[10]))
(7) -> (3), if ((y[7] →* y[3])∧(z[7] →* z[3])∧(x[7] →* x[3]))
(2) -> (0), if ((z[2] →* z[0])∧(x[2] →* x[0])∧(y[2] →* y[0])∧(&&(>@z(y[2], z[2]), >@z(x[2], z[2])) →* TRUE))
(4) -> (10), if ((y[4] →* y[10])∧(z[4] →* z[10])∧(-@z(x[4], 1@z) →* x[10]))
(0) -> (2), if ((y[0] →* y[2])∧(z[0] →* z[2])∧(-@z(x[0], 1@z) →* x[2]))
(0) -> (10), if ((y[0] →* y[10])∧(z[0] →* z[10])∧(-@z(x[0], 1@z) →* x[10]))
(4) -> (1), if ((y[4] →* y[1])∧(z[4] →* z[1])∧(-@z(x[4], 1@z) →* x[1]))
(4) -> (2), if ((y[4] →* y[2])∧(z[4] →* z[2])∧(-@z(x[4], 1@z) →* x[2]))
(4) -> (3), if ((y[4] →* y[3])∧(z[4] →* z[3])∧(-@z(x[4], 1@z) →* x[3]))
(7) -> (1), if ((y[7] →* y[1])∧(z[7] →* z[1])∧(x[7] →* x[1]))
(7) -> (6), if ((y[7] →* y[6])∧(z[7] →* z[6])∧(x[7] →* x[6]))
(0) -> (1), if ((y[0] →* y[1])∧(z[0] →* z[1])∧(-@z(x[0], 1@z) →* x[1]))
(10) -> (7), if ((z[10] →* z[7])∧(x[10] →* x[7])∧(y[10] →* y[7])∧(&&(&&(>@z(x[10], z[10]), >=@z(z[10], x[10])), >=@z(z[10], y[10])) →* TRUE))
eval(x0, x1, x2)
Cond_eval5(TRUE, x0, x1, x2)
Cond_eval2(TRUE, x0, x1, x2)
Cond_eval4(TRUE, x0, x1, x2)
Cond_eval(TRUE, x0, x1, x2)
Cond_eval1(TRUE, x0, x1, x2)
Cond_eval3(TRUE, x0, x1, x2)
↳ ITRS
↳ ITRStoIDPProof
↳ IDP
↳ UsableRulesProof
↳ IDP
↳ IDPNonInfProof
↳ IDP
↳ IDependencyGraphProof
↳ IDP
↳ IDPNonInfProof
↳ AND
↳ IDP
↳ IDependencyGraphProof
↳ IDP
↳ IDPNonInfProof
↳ IDP
z
(0) -> (2), if ((y[0] →* y[2])∧(z[0] →* z[2])∧(-@z(x[0], 1@z) →* x[2]))
(4) -> (10), if ((y[4] →* y[10])∧(z[4] →* z[10])∧(-@z(x[4], 1@z) →* x[10]))
(4) -> (6), if ((y[4] →* y[6])∧(z[4] →* z[6])∧(-@z(x[4], 1@z) →* x[6]))
(0) -> (10), if ((y[0] →* y[10])∧(z[0] →* z[10])∧(-@z(x[0], 1@z) →* x[10]))
(4) -> (2), if ((y[4] →* y[2])∧(z[4] →* z[2])∧(-@z(x[4], 1@z) →* x[2]))
(6) -> (4), if ((z[6] →* z[4])∧(x[6] →* x[4])∧(y[6] →* y[4])∧(>@z(x[6], z[6]) →* TRUE))
(0) -> (6), if ((y[0] →* y[6])∧(z[0] →* z[6])∧(-@z(x[0], 1@z) →* x[6]))
(7) -> (2), if ((y[7] →* y[2])∧(z[7] →* z[2])∧(x[7] →* x[2]))
(7) -> (10), if ((y[7] →* y[10])∧(z[7] →* z[10])∧(x[7] →* x[10]))
(7) -> (6), if ((y[7] →* y[6])∧(z[7] →* z[6])∧(x[7] →* x[6]))
(10) -> (7), if ((z[10] →* z[7])∧(x[10] →* x[7])∧(y[10] →* y[7])∧(&&(&&(>@z(x[10], z[10]), >=@z(z[10], x[10])), >=@z(z[10], y[10])) →* TRUE))
(2) -> (0), if ((z[2] →* z[0])∧(x[2] →* x[0])∧(y[2] →* y[0])∧(&&(>@z(y[2], z[2]), >@z(x[2], z[2])) →* TRUE))
eval(x0, x1, x2)
Cond_eval5(TRUE, x0, x1, x2)
Cond_eval2(TRUE, x0, x1, x2)
Cond_eval4(TRUE, x0, x1, x2)
Cond_eval(TRUE, x0, x1, x2)
Cond_eval1(TRUE, x0, x1, x2)
Cond_eval3(TRUE, x0, x1, x2)
(1) (y[0]=y[10]∧z[2]=z[0]∧x[2]=x[0]∧-@z(x[0], 1@z)=x[10]∧&&(>@z(y[2], z[2]), >@z(x[2], z[2]))=TRUE∧z[0]=z[10]∧y[2]=y[0] ⇒ COND_EVAL(TRUE, x[0], y[0], z[0])≥NonInfC∧COND_EVAL(TRUE, x[0], y[0], z[0])≥EVAL(-@z(x[0], 1@z), y[0], z[0])∧(UIncreasing(EVAL(-@z(x[0], 1@z), y[0], z[0])), ≥))
(2) (>@z(y[2], z[2])=TRUE∧>@z(x[2], z[2])=TRUE ⇒ COND_EVAL(TRUE, x[2], y[2], z[2])≥NonInfC∧COND_EVAL(TRUE, x[2], y[2], z[2])≥EVAL(-@z(x[2], 1@z), y[2], z[2])∧(UIncreasing(EVAL(-@z(x[0], 1@z), y[0], z[0])), ≥))
(3) (y[2] + -1 + (-1)z[2] ≥ 0∧-1 + x[2] + (-1)z[2] ≥ 0 ⇒ (UIncreasing(EVAL(-@z(x[0], 1@z), y[0], z[0])), ≥)∧0 ≥ 0∧1 ≥ 0)
(4) (y[2] + -1 + (-1)z[2] ≥ 0∧-1 + x[2] + (-1)z[2] ≥ 0 ⇒ (UIncreasing(EVAL(-@z(x[0], 1@z), y[0], z[0])), ≥)∧0 ≥ 0∧1 ≥ 0)
(5) (-1 + x[2] + (-1)z[2] ≥ 0∧y[2] + -1 + (-1)z[2] ≥ 0 ⇒ 0 ≥ 0∧1 ≥ 0∧(UIncreasing(EVAL(-@z(x[0], 1@z), y[0], z[0])), ≥))
(6) (x[2] ≥ 0∧y[2] + -1 + (-1)z[2] ≥ 0 ⇒ 0 ≥ 0∧1 ≥ 0∧(UIncreasing(EVAL(-@z(x[0], 1@z), y[0], z[0])), ≥))
(7) (x[2] ≥ 0∧z[2] ≥ 0 ⇒ 0 ≥ 0∧1 ≥ 0∧(UIncreasing(EVAL(-@z(x[0], 1@z), y[0], z[0])), ≥))
(8) (x[2] ≥ 0∧z[2] ≥ 0∧y[2] ≥ 0 ⇒ 0 ≥ 0∧1 ≥ 0∧(UIncreasing(EVAL(-@z(x[0], 1@z), y[0], z[0])), ≥))
(9) (x[2] ≥ 0∧z[2] ≥ 0∧y[2] ≥ 0 ⇒ 0 ≥ 0∧1 ≥ 0∧(UIncreasing(EVAL(-@z(x[0], 1@z), y[0], z[0])), ≥))
(10) (z[2]=z[0]∧x[2]=x[0]∧y[0]=y[6]∧-@z(x[0], 1@z)=x[6]∧&&(>@z(y[2], z[2]), >@z(x[2], z[2]))=TRUE∧y[2]=y[0]∧z[0]=z[6] ⇒ COND_EVAL(TRUE, x[0], y[0], z[0])≥NonInfC∧COND_EVAL(TRUE, x[0], y[0], z[0])≥EVAL(-@z(x[0], 1@z), y[0], z[0])∧(UIncreasing(EVAL(-@z(x[0], 1@z), y[0], z[0])), ≥))
(11) (>@z(y[2], z[2])=TRUE∧>@z(x[2], z[2])=TRUE ⇒ COND_EVAL(TRUE, x[2], y[2], z[2])≥NonInfC∧COND_EVAL(TRUE, x[2], y[2], z[2])≥EVAL(-@z(x[2], 1@z), y[2], z[2])∧(UIncreasing(EVAL(-@z(x[0], 1@z), y[0], z[0])), ≥))
(12) (y[2] + -1 + (-1)z[2] ≥ 0∧-1 + x[2] + (-1)z[2] ≥ 0 ⇒ (UIncreasing(EVAL(-@z(x[0], 1@z), y[0], z[0])), ≥)∧0 ≥ 0∧1 ≥ 0)
(13) (y[2] + -1 + (-1)z[2] ≥ 0∧-1 + x[2] + (-1)z[2] ≥ 0 ⇒ (UIncreasing(EVAL(-@z(x[0], 1@z), y[0], z[0])), ≥)∧0 ≥ 0∧1 ≥ 0)
(14) (-1 + x[2] + (-1)z[2] ≥ 0∧y[2] + -1 + (-1)z[2] ≥ 0 ⇒ 1 ≥ 0∧0 ≥ 0∧(UIncreasing(EVAL(-@z(x[0], 1@z), y[0], z[0])), ≥))
(15) (x[2] ≥ 0∧y[2] + -1 + (-1)z[2] ≥ 0 ⇒ 1 ≥ 0∧0 ≥ 0∧(UIncreasing(EVAL(-@z(x[0], 1@z), y[0], z[0])), ≥))
(16) (x[2] ≥ 0∧z[2] ≥ 0 ⇒ 1 ≥ 0∧0 ≥ 0∧(UIncreasing(EVAL(-@z(x[0], 1@z), y[0], z[0])), ≥))
(17) (x[2] ≥ 0∧z[2] ≥ 0∧y[2] ≥ 0 ⇒ 1 ≥ 0∧0 ≥ 0∧(UIncreasing(EVAL(-@z(x[0], 1@z), y[0], z[0])), ≥))
(18) (x[2] ≥ 0∧z[2] ≥ 0∧y[2] ≥ 0 ⇒ 1 ≥ 0∧0 ≥ 0∧(UIncreasing(EVAL(-@z(x[0], 1@z), y[0], z[0])), ≥))
(19) (z[2]=z[0]∧z[0]=z[2]1∧x[2]=x[0]∧&&(>@z(y[2], z[2]), >@z(x[2], z[2]))=TRUE∧y[0]=y[2]1∧-@z(x[0], 1@z)=x[2]1∧y[2]=y[0] ⇒ COND_EVAL(TRUE, x[0], y[0], z[0])≥NonInfC∧COND_EVAL(TRUE, x[0], y[0], z[0])≥EVAL(-@z(x[0], 1@z), y[0], z[0])∧(UIncreasing(EVAL(-@z(x[0], 1@z), y[0], z[0])), ≥))
(20) (>@z(y[2], z[2])=TRUE∧>@z(x[2], z[2])=TRUE ⇒ COND_EVAL(TRUE, x[2], y[2], z[2])≥NonInfC∧COND_EVAL(TRUE, x[2], y[2], z[2])≥EVAL(-@z(x[2], 1@z), y[2], z[2])∧(UIncreasing(EVAL(-@z(x[0], 1@z), y[0], z[0])), ≥))
(21) (y[2] + -1 + (-1)z[2] ≥ 0∧-1 + x[2] + (-1)z[2] ≥ 0 ⇒ (UIncreasing(EVAL(-@z(x[0], 1@z), y[0], z[0])), ≥)∧0 ≥ 0∧1 ≥ 0)
(22) (y[2] + -1 + (-1)z[2] ≥ 0∧-1 + x[2] + (-1)z[2] ≥ 0 ⇒ (UIncreasing(EVAL(-@z(x[0], 1@z), y[0], z[0])), ≥)∧0 ≥ 0∧1 ≥ 0)
(23) (-1 + x[2] + (-1)z[2] ≥ 0∧y[2] + -1 + (-1)z[2] ≥ 0 ⇒ 0 ≥ 0∧1 ≥ 0∧(UIncreasing(EVAL(-@z(x[0], 1@z), y[0], z[0])), ≥))
(24) (x[2] ≥ 0∧y[2] + -1 + (-1)z[2] ≥ 0 ⇒ 0 ≥ 0∧1 ≥ 0∧(UIncreasing(EVAL(-@z(x[0], 1@z), y[0], z[0])), ≥))
(25) (x[2] ≥ 0∧z[2] ≥ 0 ⇒ 0 ≥ 0∧1 ≥ 0∧(UIncreasing(EVAL(-@z(x[0], 1@z), y[0], z[0])), ≥))
(26) (x[2] ≥ 0∧z[2] ≥ 0∧y[2] ≥ 0 ⇒ 0 ≥ 0∧1 ≥ 0∧(UIncreasing(EVAL(-@z(x[0], 1@z), y[0], z[0])), ≥))
(27) (x[2] ≥ 0∧z[2] ≥ 0∧y[2] ≥ 0 ⇒ 0 ≥ 0∧1 ≥ 0∧(UIncreasing(EVAL(-@z(x[0], 1@z), y[0], z[0])), ≥))
(28) (EVAL(x[2], y[2], z[2])≥NonInfC∧EVAL(x[2], y[2], z[2])≥COND_EVAL(&&(>@z(y[2], z[2]), >@z(x[2], z[2])), x[2], y[2], z[2])∧(UIncreasing(COND_EVAL(&&(>@z(y[2], z[2]), >@z(x[2], z[2])), x[2], y[2], z[2])), ≥))
(29) ((UIncreasing(COND_EVAL(&&(>@z(y[2], z[2]), >@z(x[2], z[2])), x[2], y[2], z[2])), ≥)∧0 ≥ 0∧0 ≥ 0)
(30) ((UIncreasing(COND_EVAL(&&(>@z(y[2], z[2]), >@z(x[2], z[2])), x[2], y[2], z[2])), ≥)∧0 ≥ 0∧0 ≥ 0)
(31) (0 ≥ 0∧0 ≥ 0∧(UIncreasing(COND_EVAL(&&(>@z(y[2], z[2]), >@z(x[2], z[2])), x[2], y[2], z[2])), ≥))
(32) (0 ≥ 0∧0 = 0∧0 = 0∧0 = 0∧(UIncreasing(COND_EVAL(&&(>@z(y[2], z[2]), >@z(x[2], z[2])), x[2], y[2], z[2])), ≥)∧0 ≥ 0∧0 = 0∧0 = 0∧0 = 0)
(33) (z[10]=z[7]∧x[7]=x[6]∧y[10]=y[7]∧x[10]=x[7]∧z[7]=z[6]∧&&(&&(>@z(x[10], z[10]), >=@z(z[10], x[10])), >=@z(z[10], y[10]))=TRUE∧y[7]=y[6] ⇒ COND_EVAL5(TRUE, x[7], y[7], z[7])≥NonInfC∧COND_EVAL5(TRUE, x[7], y[7], z[7])≥EVAL(x[7], y[7], z[7])∧(UIncreasing(EVAL(x[7], y[7], z[7])), ≥))
(34) (>=@z(z[10], y[10])=TRUE∧>@z(x[10], z[10])=TRUE∧>=@z(z[10], x[10])=TRUE ⇒ COND_EVAL5(TRUE, x[10], y[10], z[10])≥NonInfC∧COND_EVAL5(TRUE, x[10], y[10], z[10])≥EVAL(x[10], y[10], z[10])∧(UIncreasing(EVAL(x[7], y[7], z[7])), ≥))
(35) (z[10] + (-1)y[10] ≥ 0∧-1 + x[10] + (-1)z[10] ≥ 0∧z[10] + (-1)x[10] ≥ 0 ⇒ (UIncreasing(EVAL(x[7], y[7], z[7])), ≥)∧-2 + (-1)Bound + (-1)z[10] + (-1)y[10] + x[10] ≥ 0∧-2 ≥ 0)
(36) (z[10] + (-1)y[10] ≥ 0∧-1 + x[10] + (-1)z[10] ≥ 0∧z[10] + (-1)x[10] ≥ 0 ⇒ (UIncreasing(EVAL(x[7], y[7], z[7])), ≥)∧-2 + (-1)Bound + (-1)z[10] + (-1)y[10] + x[10] ≥ 0∧-2 ≥ 0)
(37) (z[10] + (-1)x[10] ≥ 0∧z[10] + (-1)y[10] ≥ 0∧-1 + x[10] + (-1)z[10] ≥ 0 ⇒ (UIncreasing(EVAL(x[7], y[7], z[7])), ≥)∧-2 + (-1)Bound + (-1)z[10] + (-1)y[10] + x[10] ≥ 0∧-2 ≥ 0)
(38) (z[10]=z[7]∧y[10]=y[7]∧x[10]=x[7]∧&&(&&(>@z(x[10], z[10]), >=@z(z[10], x[10])), >=@z(z[10], y[10]))=TRUE∧z[7]=z[10]1∧y[7]=y[10]1∧x[7]=x[10]1 ⇒ COND_EVAL5(TRUE, x[7], y[7], z[7])≥NonInfC∧COND_EVAL5(TRUE, x[7], y[7], z[7])≥EVAL(x[7], y[7], z[7])∧(UIncreasing(EVAL(x[7], y[7], z[7])), ≥))
(39) (>=@z(z[10], y[10])=TRUE∧>@z(x[10], z[10])=TRUE∧>=@z(z[10], x[10])=TRUE ⇒ COND_EVAL5(TRUE, x[10], y[10], z[10])≥NonInfC∧COND_EVAL5(TRUE, x[10], y[10], z[10])≥EVAL(x[10], y[10], z[10])∧(UIncreasing(EVAL(x[7], y[7], z[7])), ≥))
(40) (z[10] + (-1)y[10] ≥ 0∧-1 + x[10] + (-1)z[10] ≥ 0∧z[10] + (-1)x[10] ≥ 0 ⇒ (UIncreasing(EVAL(x[7], y[7], z[7])), ≥)∧-2 + (-1)Bound + (-1)z[10] + (-1)y[10] + x[10] ≥ 0∧-2 ≥ 0)
(41) (z[10] + (-1)y[10] ≥ 0∧-1 + x[10] + (-1)z[10] ≥ 0∧z[10] + (-1)x[10] ≥ 0 ⇒ (UIncreasing(EVAL(x[7], y[7], z[7])), ≥)∧-2 + (-1)Bound + (-1)z[10] + (-1)y[10] + x[10] ≥ 0∧-2 ≥ 0)
(42) (z[10] + (-1)x[10] ≥ 0∧z[10] + (-1)y[10] ≥ 0∧-1 + x[10] + (-1)z[10] ≥ 0 ⇒ (UIncreasing(EVAL(x[7], y[7], z[7])), ≥)∧-2 ≥ 0∧-2 + (-1)Bound + (-1)z[10] + (-1)y[10] + x[10] ≥ 0)
(43) (z[10]=z[7]∧y[10]=y[7]∧x[10]=x[7]∧y[7]=y[2]∧&&(&&(>@z(x[10], z[10]), >=@z(z[10], x[10])), >=@z(z[10], y[10]))=TRUE∧z[7]=z[2]∧x[7]=x[2] ⇒ COND_EVAL5(TRUE, x[7], y[7], z[7])≥NonInfC∧COND_EVAL5(TRUE, x[7], y[7], z[7])≥EVAL(x[7], y[7], z[7])∧(UIncreasing(EVAL(x[7], y[7], z[7])), ≥))
(44) (>=@z(z[10], y[10])=TRUE∧>@z(x[10], z[10])=TRUE∧>=@z(z[10], x[10])=TRUE ⇒ COND_EVAL5(TRUE, x[10], y[10], z[10])≥NonInfC∧COND_EVAL5(TRUE, x[10], y[10], z[10])≥EVAL(x[10], y[10], z[10])∧(UIncreasing(EVAL(x[7], y[7], z[7])), ≥))
(45) (z[10] + (-1)y[10] ≥ 0∧-1 + x[10] + (-1)z[10] ≥ 0∧z[10] + (-1)x[10] ≥ 0 ⇒ (UIncreasing(EVAL(x[7], y[7], z[7])), ≥)∧-2 + (-1)Bound + (-1)z[10] + (-1)y[10] + x[10] ≥ 0∧-2 ≥ 0)
(46) (z[10] + (-1)y[10] ≥ 0∧-1 + x[10] + (-1)z[10] ≥ 0∧z[10] + (-1)x[10] ≥ 0 ⇒ (UIncreasing(EVAL(x[7], y[7], z[7])), ≥)∧-2 + (-1)Bound + (-1)z[10] + (-1)y[10] + x[10] ≥ 0∧-2 ≥ 0)
(47) (z[10] + (-1)x[10] ≥ 0∧z[10] + (-1)y[10] ≥ 0∧-1 + x[10] + (-1)z[10] ≥ 0 ⇒ -2 + (-1)Bound + (-1)z[10] + (-1)y[10] + x[10] ≥ 0∧(UIncreasing(EVAL(x[7], y[7], z[7])), ≥)∧-2 ≥ 0)
(48) (EVAL(x[10], y[10], z[10])≥NonInfC∧EVAL(x[10], y[10], z[10])≥COND_EVAL5(&&(&&(>@z(x[10], z[10]), >=@z(z[10], x[10])), >=@z(z[10], y[10])), x[10], y[10], z[10])∧(UIncreasing(COND_EVAL5(&&(&&(>@z(x[10], z[10]), >=@z(z[10], x[10])), >=@z(z[10], y[10])), x[10], y[10], z[10])), ≥))
(49) ((UIncreasing(COND_EVAL5(&&(&&(>@z(x[10], z[10]), >=@z(z[10], x[10])), >=@z(z[10], y[10])), x[10], y[10], z[10])), ≥)∧0 ≥ 0∧1 ≥ 0)
(50) ((UIncreasing(COND_EVAL5(&&(&&(>@z(x[10], z[10]), >=@z(z[10], x[10])), >=@z(z[10], y[10])), x[10], y[10], z[10])), ≥)∧0 ≥ 0∧1 ≥ 0)
(51) (1 ≥ 0∧0 ≥ 0∧(UIncreasing(COND_EVAL5(&&(&&(>@z(x[10], z[10]), >=@z(z[10], x[10])), >=@z(z[10], y[10])), x[10], y[10], z[10])), ≥))
(52) (0 = 0∧0 = 0∧0 = 0∧0 = 0∧1 ≥ 0∧(UIncreasing(COND_EVAL5(&&(&&(>@z(x[10], z[10]), >=@z(z[10], x[10])), >=@z(z[10], y[10])), x[10], y[10], z[10])), ≥)∧0 = 0∧0 ≥ 0∧0 = 0)
(53) (z[4]=z[2]∧-@z(x[4], 1@z)=x[2]∧y[6]=y[4]∧y[4]=y[2]∧x[6]=x[4]∧>@z(x[6], z[6])=TRUE∧z[6]=z[4] ⇒ COND_EVAL4(TRUE, x[4], y[4], z[4])≥NonInfC∧COND_EVAL4(TRUE, x[4], y[4], z[4])≥EVAL(-@z(x[4], 1@z), y[4], z[4])∧(UIncreasing(EVAL(-@z(x[4], 1@z), y[4], z[4])), ≥))
(54) (>@z(x[6], z[6])=TRUE ⇒ COND_EVAL4(TRUE, x[6], y[6], z[6])≥NonInfC∧COND_EVAL4(TRUE, x[6], y[6], z[6])≥EVAL(-@z(x[6], 1@z), y[6], z[6])∧(UIncreasing(EVAL(-@z(x[4], 1@z), y[4], z[4])), ≥))
(55) (x[6] + -1 + (-1)z[6] ≥ 0 ⇒ (UIncreasing(EVAL(-@z(x[4], 1@z), y[4], z[4])), ≥)∧0 ≥ 0∧0 ≥ 0)
(56) (x[6] + -1 + (-1)z[6] ≥ 0 ⇒ (UIncreasing(EVAL(-@z(x[4], 1@z), y[4], z[4])), ≥)∧0 ≥ 0∧0 ≥ 0)
(57) (x[6] + -1 + (-1)z[6] ≥ 0 ⇒ 0 ≥ 0∧0 ≥ 0∧(UIncreasing(EVAL(-@z(x[4], 1@z), y[4], z[4])), ≥))
(58) (x[6] + -1 + (-1)z[6] ≥ 0 ⇒ 0 ≥ 0∧0 ≥ 0∧0 = 0∧(UIncreasing(EVAL(-@z(x[4], 1@z), y[4], z[4])), ≥)∧0 = 0)
(59) (x[6] ≥ 0 ⇒ 0 ≥ 0∧0 ≥ 0∧0 = 0∧(UIncreasing(EVAL(-@z(x[4], 1@z), y[4], z[4])), ≥)∧0 = 0)
(60) (x[6] ≥ 0∧z[6] ≥ 0 ⇒ 0 ≥ 0∧0 ≥ 0∧0 = 0∧(UIncreasing(EVAL(-@z(x[4], 1@z), y[4], z[4])), ≥)∧0 = 0)
(61) (x[6] ≥ 0∧z[6] ≥ 0 ⇒ 0 ≥ 0∧0 ≥ 0∧0 = 0∧(UIncreasing(EVAL(-@z(x[4], 1@z), y[4], z[4])), ≥)∧0 = 0)
(62) (y[4]=y[6]1∧-@z(x[4], 1@z)=x[6]1∧y[6]=y[4]∧z[4]=z[6]1∧x[6]=x[4]∧>@z(x[6], z[6])=TRUE∧z[6]=z[4] ⇒ COND_EVAL4(TRUE, x[4], y[4], z[4])≥NonInfC∧COND_EVAL4(TRUE, x[4], y[4], z[4])≥EVAL(-@z(x[4], 1@z), y[4], z[4])∧(UIncreasing(EVAL(-@z(x[4], 1@z), y[4], z[4])), ≥))
(63) (>@z(x[6], z[6])=TRUE ⇒ COND_EVAL4(TRUE, x[6], y[6], z[6])≥NonInfC∧COND_EVAL4(TRUE, x[6], y[6], z[6])≥EVAL(-@z(x[6], 1@z), y[6], z[6])∧(UIncreasing(EVAL(-@z(x[4], 1@z), y[4], z[4])), ≥))
(64) (x[6] + -1 + (-1)z[6] ≥ 0 ⇒ (UIncreasing(EVAL(-@z(x[4], 1@z), y[4], z[4])), ≥)∧0 ≥ 0∧0 ≥ 0)
(65) (x[6] + -1 + (-1)z[6] ≥ 0 ⇒ (UIncreasing(EVAL(-@z(x[4], 1@z), y[4], z[4])), ≥)∧0 ≥ 0∧0 ≥ 0)
(66) (x[6] + -1 + (-1)z[6] ≥ 0 ⇒ 0 ≥ 0∧0 ≥ 0∧(UIncreasing(EVAL(-@z(x[4], 1@z), y[4], z[4])), ≥))
(67) (x[6] + -1 + (-1)z[6] ≥ 0 ⇒ 0 ≥ 0∧0 = 0∧0 ≥ 0∧0 = 0∧(UIncreasing(EVAL(-@z(x[4], 1@z), y[4], z[4])), ≥))
(68) (x[6] ≥ 0 ⇒ 0 ≥ 0∧0 = 0∧0 ≥ 0∧0 = 0∧(UIncreasing(EVAL(-@z(x[4], 1@z), y[4], z[4])), ≥))
(69) (x[6] ≥ 0∧z[6] ≥ 0 ⇒ 0 ≥ 0∧0 = 0∧0 ≥ 0∧0 = 0∧(UIncreasing(EVAL(-@z(x[4], 1@z), y[4], z[4])), ≥))
(70) (x[6] ≥ 0∧z[6] ≥ 0 ⇒ 0 ≥ 0∧0 = 0∧0 ≥ 0∧0 = 0∧(UIncreasing(EVAL(-@z(x[4], 1@z), y[4], z[4])), ≥))
(71) (-@z(x[4], 1@z)=x[10]∧y[6]=y[4]∧y[4]=y[10]∧x[6]=x[4]∧z[4]=z[10]∧>@z(x[6], z[6])=TRUE∧z[6]=z[4] ⇒ COND_EVAL4(TRUE, x[4], y[4], z[4])≥NonInfC∧COND_EVAL4(TRUE, x[4], y[4], z[4])≥EVAL(-@z(x[4], 1@z), y[4], z[4])∧(UIncreasing(EVAL(-@z(x[4], 1@z), y[4], z[4])), ≥))
(72) (>@z(x[6], z[6])=TRUE ⇒ COND_EVAL4(TRUE, x[6], y[6], z[6])≥NonInfC∧COND_EVAL4(TRUE, x[6], y[6], z[6])≥EVAL(-@z(x[6], 1@z), y[6], z[6])∧(UIncreasing(EVAL(-@z(x[4], 1@z), y[4], z[4])), ≥))
(73) (x[6] + -1 + (-1)z[6] ≥ 0 ⇒ (UIncreasing(EVAL(-@z(x[4], 1@z), y[4], z[4])), ≥)∧0 ≥ 0∧0 ≥ 0)
(74) (x[6] + -1 + (-1)z[6] ≥ 0 ⇒ (UIncreasing(EVAL(-@z(x[4], 1@z), y[4], z[4])), ≥)∧0 ≥ 0∧0 ≥ 0)
(75) (x[6] + -1 + (-1)z[6] ≥ 0 ⇒ 0 ≥ 0∧0 ≥ 0∧(UIncreasing(EVAL(-@z(x[4], 1@z), y[4], z[4])), ≥))
(76) (x[6] + -1 + (-1)z[6] ≥ 0 ⇒ 0 ≥ 0∧0 = 0∧0 ≥ 0∧0 = 0∧(UIncreasing(EVAL(-@z(x[4], 1@z), y[4], z[4])), ≥))
(77) (x[6] ≥ 0 ⇒ 0 ≥ 0∧0 = 0∧0 ≥ 0∧0 = 0∧(UIncreasing(EVAL(-@z(x[4], 1@z), y[4], z[4])), ≥))
(78) (x[6] ≥ 0∧z[6] ≥ 0 ⇒ 0 ≥ 0∧0 = 0∧0 ≥ 0∧0 = 0∧(UIncreasing(EVAL(-@z(x[4], 1@z), y[4], z[4])), ≥))
(79) (x[6] ≥ 0∧z[6] ≥ 0 ⇒ 0 ≥ 0∧0 = 0∧0 ≥ 0∧0 = 0∧(UIncreasing(EVAL(-@z(x[4], 1@z), y[4], z[4])), ≥))
(80) (EVAL(x[6], y[6], z[6])≥NonInfC∧EVAL(x[6], y[6], z[6])≥COND_EVAL4(>@z(x[6], z[6]), x[6], y[6], z[6])∧(UIncreasing(COND_EVAL4(>@z(x[6], z[6]), x[6], y[6], z[6])), ≥))
(81) ((UIncreasing(COND_EVAL4(>@z(x[6], z[6]), x[6], y[6], z[6])), ≥)∧0 ≥ 0∧0 ≥ 0)
(82) ((UIncreasing(COND_EVAL4(>@z(x[6], z[6]), x[6], y[6], z[6])), ≥)∧0 ≥ 0∧0 ≥ 0)
(83) (0 ≥ 0∧0 ≥ 0∧(UIncreasing(COND_EVAL4(>@z(x[6], z[6]), x[6], y[6], z[6])), ≥))
(84) (0 = 0∧0 = 0∧0 ≥ 0∧0 = 0∧0 ≥ 0∧0 = 0∧0 = 0∧(UIncreasing(COND_EVAL4(>@z(x[6], z[6]), x[6], y[6], z[6])), ≥)∧0 = 0)
POL(-@z(x1, x2)) = x1 + (-1)x2
POL(COND_EVAL5(x1, x2, x3, x4)) = (-1)x4 + (-1)x3 + x2 + (2)x1
POL(>=@z(x1, x2)) = -1
POL(TRUE) = -1
POL(&&(x1, x2)) = -1
POL(COND_EVAL4(x1, x2, x3, x4)) = -1 + (-1)x4 + (-1)x3 + x2
POL(EVAL(x1, x2, x3)) = (-1)x3 + (-1)x2 + x1
POL(COND_EVAL(x1, x2, x3, x4)) = -1 + (-1)x4 + (-1)x3 + x2 + (-1)x1
POL(FALSE) = -1
POL(1@z) = 1
POL(undefined) = -1
POL(>@z(x1, x2)) = -1
EVAL(x[10], y[10], z[10]) → COND_EVAL5(&&(&&(>@z(x[10], z[10]), >=@z(z[10], x[10])), >=@z(z[10], y[10])), x[10], y[10], z[10])
EVAL(x[6], y[6], z[6]) → COND_EVAL4(>@z(x[6], z[6]), x[6], y[6], z[6])
COND_EVAL5(TRUE, x[7], y[7], z[7]) → EVAL(x[7], y[7], z[7])
COND_EVAL(TRUE, x[0], y[0], z[0]) → EVAL(-@z(x[0], 1@z), y[0], z[0])
EVAL(x[2], y[2], z[2]) → COND_EVAL(&&(>@z(y[2], z[2]), >@z(x[2], z[2])), x[2], y[2], z[2])
COND_EVAL5(TRUE, x[7], y[7], z[7]) → EVAL(x[7], y[7], z[7])
COND_EVAL4(TRUE, x[4], y[4], z[4]) → EVAL(-@z(x[4], 1@z), y[4], z[4])
&&(FALSE, FALSE)1 ↔ FALSE1
-@z1 ↔
&&(TRUE, TRUE)1 ↔ TRUE1
&&(FALSE, TRUE)1 ↔ FALSE1
&&(TRUE, FALSE)1 ↔ FALSE1
↳ ITRS
↳ ITRStoIDPProof
↳ IDP
↳ UsableRulesProof
↳ IDP
↳ IDPNonInfProof
↳ IDP
↳ IDependencyGraphProof
↳ IDP
↳ IDPNonInfProof
↳ AND
↳ IDP
↳ IDependencyGraphProof
↳ IDP
↳ IDPNonInfProof
↳ AND
↳ IDP
↳ IDependencyGraphProof
↳ IDP
↳ IDP
z
(0) -> (2), if ((y[0] →* y[2])∧(z[0] →* z[2])∧(-@z(x[0], 1@z) →* x[2]))
(4) -> (10), if ((y[4] →* y[10])∧(z[4] →* z[10])∧(-@z(x[4], 1@z) →* x[10]))
(4) -> (6), if ((y[4] →* y[6])∧(z[4] →* z[6])∧(-@z(x[4], 1@z) →* x[6]))
(0) -> (10), if ((y[0] →* y[10])∧(z[0] →* z[10])∧(-@z(x[0], 1@z) →* x[10]))
(4) -> (2), if ((y[4] →* y[2])∧(z[4] →* z[2])∧(-@z(x[4], 1@z) →* x[2]))
(6) -> (4), if ((z[6] →* z[4])∧(x[6] →* x[4])∧(y[6] →* y[4])∧(>@z(x[6], z[6]) →* TRUE))
(0) -> (6), if ((y[0] →* y[6])∧(z[0] →* z[6])∧(-@z(x[0], 1@z) →* x[6]))
(2) -> (0), if ((z[2] →* z[0])∧(x[2] →* x[0])∧(y[2] →* y[0])∧(&&(>@z(y[2], z[2]), >@z(x[2], z[2])) →* TRUE))
eval(x0, x1, x2)
Cond_eval5(TRUE, x0, x1, x2)
Cond_eval2(TRUE, x0, x1, x2)
Cond_eval4(TRUE, x0, x1, x2)
Cond_eval(TRUE, x0, x1, x2)
Cond_eval1(TRUE, x0, x1, x2)
Cond_eval3(TRUE, x0, x1, x2)
↳ ITRS
↳ ITRStoIDPProof
↳ IDP
↳ UsableRulesProof
↳ IDP
↳ IDPNonInfProof
↳ IDP
↳ IDependencyGraphProof
↳ IDP
↳ IDPNonInfProof
↳ AND
↳ IDP
↳ IDependencyGraphProof
↳ IDP
↳ IDPNonInfProof
↳ AND
↳ IDP
↳ IDependencyGraphProof
↳ IDP
↳ IDPNonInfProof
↳ IDP
↳ IDP
z
(0) -> (2), if ((y[0] →* y[2])∧(z[0] →* z[2])∧(-@z(x[0], 1@z) →* x[2]))
(4) -> (6), if ((y[4] →* y[6])∧(z[4] →* z[6])∧(-@z(x[4], 1@z) →* x[6]))
(4) -> (2), if ((y[4] →* y[2])∧(z[4] →* z[2])∧(-@z(x[4], 1@z) →* x[2]))
(6) -> (4), if ((z[6] →* z[4])∧(x[6] →* x[4])∧(y[6] →* y[4])∧(>@z(x[6], z[6]) →* TRUE))
(0) -> (6), if ((y[0] →* y[6])∧(z[0] →* z[6])∧(-@z(x[0], 1@z) →* x[6]))
(2) -> (0), if ((z[2] →* z[0])∧(x[2] →* x[0])∧(y[2] →* y[0])∧(&&(>@z(y[2], z[2]), >@z(x[2], z[2])) →* TRUE))
eval(x0, x1, x2)
Cond_eval5(TRUE, x0, x1, x2)
Cond_eval2(TRUE, x0, x1, x2)
Cond_eval4(TRUE, x0, x1, x2)
Cond_eval(TRUE, x0, x1, x2)
Cond_eval1(TRUE, x0, x1, x2)
Cond_eval3(TRUE, x0, x1, x2)
(1) (z[2]=z[0]∧x[2]=x[0]∧y[0]=y[6]∧-@z(x[0], 1@z)=x[6]∧&&(>@z(y[2], z[2]), >@z(x[2], z[2]))=TRUE∧y[2]=y[0]∧z[0]=z[6] ⇒ COND_EVAL(TRUE, x[0], y[0], z[0])≥NonInfC∧COND_EVAL(TRUE, x[0], y[0], z[0])≥EVAL(-@z(x[0], 1@z), y[0], z[0])∧(UIncreasing(EVAL(-@z(x[0], 1@z), y[0], z[0])), ≥))
(2) (>@z(y[2], z[2])=TRUE∧>@z(x[2], z[2])=TRUE ⇒ COND_EVAL(TRUE, x[2], y[2], z[2])≥NonInfC∧COND_EVAL(TRUE, x[2], y[2], z[2])≥EVAL(-@z(x[2], 1@z), y[2], z[2])∧(UIncreasing(EVAL(-@z(x[0], 1@z), y[0], z[0])), ≥))
(3) (y[2] + -1 + (-1)z[2] ≥ 0∧-1 + x[2] + (-1)z[2] ≥ 0 ⇒ (UIncreasing(EVAL(-@z(x[0], 1@z), y[0], z[0])), ≥)∧0 ≥ 0∧0 ≥ 0)
(4) (y[2] + -1 + (-1)z[2] ≥ 0∧-1 + x[2] + (-1)z[2] ≥ 0 ⇒ (UIncreasing(EVAL(-@z(x[0], 1@z), y[0], z[0])), ≥)∧0 ≥ 0∧0 ≥ 0)
(5) (y[2] + -1 + (-1)z[2] ≥ 0∧-1 + x[2] + (-1)z[2] ≥ 0 ⇒ 0 ≥ 0∧0 ≥ 0∧(UIncreasing(EVAL(-@z(x[0], 1@z), y[0], z[0])), ≥))
(6) (y[2] + -1 + (-1)z[2] ≥ 0∧x[2] ≥ 0 ⇒ 0 ≥ 0∧0 ≥ 0∧(UIncreasing(EVAL(-@z(x[0], 1@z), y[0], z[0])), ≥))
(7) (z[2] ≥ 0∧x[2] ≥ 0 ⇒ 0 ≥ 0∧0 ≥ 0∧(UIncreasing(EVAL(-@z(x[0], 1@z), y[0], z[0])), ≥))
(8) (z[2] ≥ 0∧x[2] ≥ 0∧y[2] ≥ 0 ⇒ 0 ≥ 0∧0 ≥ 0∧(UIncreasing(EVAL(-@z(x[0], 1@z), y[0], z[0])), ≥))
(9) (z[2] ≥ 0∧x[2] ≥ 0∧y[2] ≥ 0 ⇒ 0 ≥ 0∧0 ≥ 0∧(UIncreasing(EVAL(-@z(x[0], 1@z), y[0], z[0])), ≥))
(10) (z[2]=z[0]∧z[0]=z[2]1∧x[2]=x[0]∧&&(>@z(y[2], z[2]), >@z(x[2], z[2]))=TRUE∧y[0]=y[2]1∧-@z(x[0], 1@z)=x[2]1∧y[2]=y[0] ⇒ COND_EVAL(TRUE, x[0], y[0], z[0])≥NonInfC∧COND_EVAL(TRUE, x[0], y[0], z[0])≥EVAL(-@z(x[0], 1@z), y[0], z[0])∧(UIncreasing(EVAL(-@z(x[0], 1@z), y[0], z[0])), ≥))
(11) (>@z(y[2], z[2])=TRUE∧>@z(x[2], z[2])=TRUE ⇒ COND_EVAL(TRUE, x[2], y[2], z[2])≥NonInfC∧COND_EVAL(TRUE, x[2], y[2], z[2])≥EVAL(-@z(x[2], 1@z), y[2], z[2])∧(UIncreasing(EVAL(-@z(x[0], 1@z), y[0], z[0])), ≥))
(12) (y[2] + -1 + (-1)z[2] ≥ 0∧-1 + x[2] + (-1)z[2] ≥ 0 ⇒ (UIncreasing(EVAL(-@z(x[0], 1@z), y[0], z[0])), ≥)∧0 ≥ 0∧0 ≥ 0)
(13) (y[2] + -1 + (-1)z[2] ≥ 0∧-1 + x[2] + (-1)z[2] ≥ 0 ⇒ (UIncreasing(EVAL(-@z(x[0], 1@z), y[0], z[0])), ≥)∧0 ≥ 0∧0 ≥ 0)
(14) (-1 + x[2] + (-1)z[2] ≥ 0∧y[2] + -1 + (-1)z[2] ≥ 0 ⇒ 0 ≥ 0∧0 ≥ 0∧(UIncreasing(EVAL(-@z(x[0], 1@z), y[0], z[0])), ≥))
(15) (x[2] ≥ 0∧y[2] + -1 + (-1)z[2] ≥ 0 ⇒ 0 ≥ 0∧0 ≥ 0∧(UIncreasing(EVAL(-@z(x[0], 1@z), y[0], z[0])), ≥))
(16) (x[2] ≥ 0∧z[2] ≥ 0 ⇒ 0 ≥ 0∧0 ≥ 0∧(UIncreasing(EVAL(-@z(x[0], 1@z), y[0], z[0])), ≥))
(17) (x[2] ≥ 0∧z[2] ≥ 0∧y[2] ≥ 0 ⇒ 0 ≥ 0∧0 ≥ 0∧(UIncreasing(EVAL(-@z(x[0], 1@z), y[0], z[0])), ≥))
(18) (x[2] ≥ 0∧z[2] ≥ 0∧y[2] ≥ 0 ⇒ 0 ≥ 0∧0 ≥ 0∧(UIncreasing(EVAL(-@z(x[0], 1@z), y[0], z[0])), ≥))
(19) (EVAL(x[2], y[2], z[2])≥NonInfC∧EVAL(x[2], y[2], z[2])≥COND_EVAL(&&(>@z(y[2], z[2]), >@z(x[2], z[2])), x[2], y[2], z[2])∧(UIncreasing(COND_EVAL(&&(>@z(y[2], z[2]), >@z(x[2], z[2])), x[2], y[2], z[2])), ≥))
(20) ((UIncreasing(COND_EVAL(&&(>@z(y[2], z[2]), >@z(x[2], z[2])), x[2], y[2], z[2])), ≥)∧0 ≥ 0∧1 ≥ 0)
(21) ((UIncreasing(COND_EVAL(&&(>@z(y[2], z[2]), >@z(x[2], z[2])), x[2], y[2], z[2])), ≥)∧0 ≥ 0∧1 ≥ 0)
(22) (1 ≥ 0∧0 ≥ 0∧(UIncreasing(COND_EVAL(&&(>@z(y[2], z[2]), >@z(x[2], z[2])), x[2], y[2], z[2])), ≥))
(23) (0 = 0∧0 ≥ 0∧0 = 0∧0 = 0∧0 = 0∧(UIncreasing(COND_EVAL(&&(>@z(y[2], z[2]), >@z(x[2], z[2])), x[2], y[2], z[2])), ≥)∧0 = 0∧1 ≥ 0∧0 = 0)
(24) (z[4]=z[2]∧-@z(x[4], 1@z)=x[2]∧y[6]=y[4]∧y[4]=y[2]∧x[6]=x[4]∧>@z(x[6], z[6])=TRUE∧z[6]=z[4] ⇒ COND_EVAL4(TRUE, x[4], y[4], z[4])≥NonInfC∧COND_EVAL4(TRUE, x[4], y[4], z[4])≥EVAL(-@z(x[4], 1@z), y[4], z[4])∧(UIncreasing(EVAL(-@z(x[4], 1@z), y[4], z[4])), ≥))
(25) (>@z(x[6], z[6])=TRUE ⇒ COND_EVAL4(TRUE, x[6], y[6], z[6])≥NonInfC∧COND_EVAL4(TRUE, x[6], y[6], z[6])≥EVAL(-@z(x[6], 1@z), y[6], z[6])∧(UIncreasing(EVAL(-@z(x[4], 1@z), y[4], z[4])), ≥))
(26) (x[6] + -1 + (-1)z[6] ≥ 0 ⇒ (UIncreasing(EVAL(-@z(x[4], 1@z), y[4], z[4])), ≥)∧-1 + (-1)Bound + (-1)z[6] + x[6] ≥ 0∧0 ≥ 0)
(27) (x[6] + -1 + (-1)z[6] ≥ 0 ⇒ (UIncreasing(EVAL(-@z(x[4], 1@z), y[4], z[4])), ≥)∧-1 + (-1)Bound + (-1)z[6] + x[6] ≥ 0∧0 ≥ 0)
(28) (x[6] + -1 + (-1)z[6] ≥ 0 ⇒ 0 ≥ 0∧-1 + (-1)Bound + (-1)z[6] + x[6] ≥ 0∧(UIncreasing(EVAL(-@z(x[4], 1@z), y[4], z[4])), ≥))
(29) (x[6] + -1 + (-1)z[6] ≥ 0 ⇒ 0 ≥ 0∧-1 + (-1)Bound + (-1)z[6] + x[6] ≥ 0∧0 = 0∧(UIncreasing(EVAL(-@z(x[4], 1@z), y[4], z[4])), ≥)∧0 = 0)
(30) (x[6] ≥ 0 ⇒ 0 ≥ 0∧(-1)Bound + x[6] ≥ 0∧0 = 0∧(UIncreasing(EVAL(-@z(x[4], 1@z), y[4], z[4])), ≥)∧0 = 0)
(31) (x[6] ≥ 0∧z[6] ≥ 0 ⇒ 0 ≥ 0∧(-1)Bound + x[6] ≥ 0∧0 = 0∧(UIncreasing(EVAL(-@z(x[4], 1@z), y[4], z[4])), ≥)∧0 = 0)
(32) (x[6] ≥ 0∧z[6] ≥ 0 ⇒ 0 ≥ 0∧(-1)Bound + x[6] ≥ 0∧0 = 0∧(UIncreasing(EVAL(-@z(x[4], 1@z), y[4], z[4])), ≥)∧0 = 0)
(33) (y[4]=y[6]1∧-@z(x[4], 1@z)=x[6]1∧y[6]=y[4]∧z[4]=z[6]1∧x[6]=x[4]∧>@z(x[6], z[6])=TRUE∧z[6]=z[4] ⇒ COND_EVAL4(TRUE, x[4], y[4], z[4])≥NonInfC∧COND_EVAL4(TRUE, x[4], y[4], z[4])≥EVAL(-@z(x[4], 1@z), y[4], z[4])∧(UIncreasing(EVAL(-@z(x[4], 1@z), y[4], z[4])), ≥))
(34) (>@z(x[6], z[6])=TRUE ⇒ COND_EVAL4(TRUE, x[6], y[6], z[6])≥NonInfC∧COND_EVAL4(TRUE, x[6], y[6], z[6])≥EVAL(-@z(x[6], 1@z), y[6], z[6])∧(UIncreasing(EVAL(-@z(x[4], 1@z), y[4], z[4])), ≥))
(35) (x[6] + -1 + (-1)z[6] ≥ 0 ⇒ (UIncreasing(EVAL(-@z(x[4], 1@z), y[4], z[4])), ≥)∧-1 + (-1)Bound + (-1)z[6] + x[6] ≥ 0∧0 ≥ 0)
(36) (x[6] + -1 + (-1)z[6] ≥ 0 ⇒ (UIncreasing(EVAL(-@z(x[4], 1@z), y[4], z[4])), ≥)∧-1 + (-1)Bound + (-1)z[6] + x[6] ≥ 0∧0 ≥ 0)
(37) (x[6] + -1 + (-1)z[6] ≥ 0 ⇒ 0 ≥ 0∧-1 + (-1)Bound + (-1)z[6] + x[6] ≥ 0∧(UIncreasing(EVAL(-@z(x[4], 1@z), y[4], z[4])), ≥))
(38) (x[6] + -1 + (-1)z[6] ≥ 0 ⇒ 0 = 0∧0 = 0∧-1 + (-1)Bound + (-1)z[6] + x[6] ≥ 0∧0 ≥ 0∧(UIncreasing(EVAL(-@z(x[4], 1@z), y[4], z[4])), ≥))
(39) (x[6] ≥ 0 ⇒ 0 = 0∧0 = 0∧(-1)Bound + x[6] ≥ 0∧0 ≥ 0∧(UIncreasing(EVAL(-@z(x[4], 1@z), y[4], z[4])), ≥))
(40) (x[6] ≥ 0∧z[6] ≥ 0 ⇒ 0 = 0∧0 = 0∧(-1)Bound + x[6] ≥ 0∧0 ≥ 0∧(UIncreasing(EVAL(-@z(x[4], 1@z), y[4], z[4])), ≥))
(41) (x[6] ≥ 0∧z[6] ≥ 0 ⇒ 0 = 0∧0 = 0∧(-1)Bound + x[6] ≥ 0∧0 ≥ 0∧(UIncreasing(EVAL(-@z(x[4], 1@z), y[4], z[4])), ≥))
(42) (EVAL(x[6], y[6], z[6])≥NonInfC∧EVAL(x[6], y[6], z[6])≥COND_EVAL4(>@z(x[6], z[6]), x[6], y[6], z[6])∧(UIncreasing(COND_EVAL4(>@z(x[6], z[6]), x[6], y[6], z[6])), ≥))
(43) ((UIncreasing(COND_EVAL4(>@z(x[6], z[6]), x[6], y[6], z[6])), ≥)∧0 ≥ 0∧0 ≥ 0)
(44) ((UIncreasing(COND_EVAL4(>@z(x[6], z[6]), x[6], y[6], z[6])), ≥)∧0 ≥ 0∧0 ≥ 0)
(45) (0 ≥ 0∧(UIncreasing(COND_EVAL4(>@z(x[6], z[6]), x[6], y[6], z[6])), ≥)∧0 ≥ 0)
(46) (0 = 0∧0 = 0∧0 = 0∧0 = 0∧0 ≥ 0∧0 = 0∧0 = 0∧(UIncreasing(COND_EVAL4(>@z(x[6], z[6]), x[6], y[6], z[6])), ≥)∧0 ≥ 0)
POL(-@z(x1, x2)) = x1 + (-1)x2
POL(TRUE) = 1
POL(&&(x1, x2)) = 1
POL(COND_EVAL4(x1, x2, x3, x4)) = -1 + (-1)x4 + x2
POL(EVAL(x1, x2, x3)) = -1 + (-1)x3 + x1
POL(COND_EVAL(x1, x2, x3, x4)) = -1 + (-1)x4 + x2 + (-1)x1
POL(FALSE) = 2
POL(1@z) = 1
POL(undefined) = -1
POL(>@z(x1, x2)) = -1
COND_EVAL4(TRUE, x[4], y[4], z[4]) → EVAL(-@z(x[4], 1@z), y[4], z[4])
COND_EVAL4(TRUE, x[4], y[4], z[4]) → EVAL(-@z(x[4], 1@z), y[4], z[4])
COND_EVAL(TRUE, x[0], y[0], z[0]) → EVAL(-@z(x[0], 1@z), y[0], z[0])
EVAL(x[2], y[2], z[2]) → COND_EVAL(&&(>@z(y[2], z[2]), >@z(x[2], z[2])), x[2], y[2], z[2])
EVAL(x[6], y[6], z[6]) → COND_EVAL4(>@z(x[6], z[6]), x[6], y[6], z[6])
FALSE1 → &&(FALSE, FALSE)1
-@z1 ↔
TRUE1 → &&(TRUE, TRUE)1
FALSE1 → &&(TRUE, FALSE)1
FALSE1 → &&(FALSE, TRUE)1
↳ ITRS
↳ ITRStoIDPProof
↳ IDP
↳ UsableRulesProof
↳ IDP
↳ IDPNonInfProof
↳ IDP
↳ IDependencyGraphProof
↳ IDP
↳ IDPNonInfProof
↳ AND
↳ IDP
↳ IDependencyGraphProof
↳ IDP
↳ IDPNonInfProof
↳ AND
↳ IDP
↳ IDependencyGraphProof
↳ IDP
↳ IDPNonInfProof
↳ IDP
↳ IDependencyGraphProof
↳ IDP
↳ IDP
z
(0) -> (2), if ((y[0] →* y[2])∧(z[0] →* z[2])∧(-@z(x[0], 1@z) →* x[2]))
(0) -> (6), if ((y[0] →* y[6])∧(z[0] →* z[6])∧(-@z(x[0], 1@z) →* x[6]))
(2) -> (0), if ((z[2] →* z[0])∧(x[2] →* x[0])∧(y[2] →* y[0])∧(&&(>@z(y[2], z[2]), >@z(x[2], z[2])) →* TRUE))
eval(x0, x1, x2)
Cond_eval5(TRUE, x0, x1, x2)
Cond_eval2(TRUE, x0, x1, x2)
Cond_eval4(TRUE, x0, x1, x2)
Cond_eval(TRUE, x0, x1, x2)
Cond_eval1(TRUE, x0, x1, x2)
Cond_eval3(TRUE, x0, x1, x2)
↳ ITRS
↳ ITRStoIDPProof
↳ IDP
↳ UsableRulesProof
↳ IDP
↳ IDPNonInfProof
↳ IDP
↳ IDependencyGraphProof
↳ IDP
↳ IDPNonInfProof
↳ AND
↳ IDP
↳ IDependencyGraphProof
↳ IDP
↳ IDPNonInfProof
↳ AND
↳ IDP
↳ IDependencyGraphProof
↳ IDP
↳ IDPNonInfProof
↳ IDP
↳ IDependencyGraphProof
↳ IDP
↳ IDPNonInfProof
↳ IDP
↳ IDP
z
(0) -> (2), if ((y[0] →* y[2])∧(z[0] →* z[2])∧(-@z(x[0], 1@z) →* x[2]))
(2) -> (0), if ((z[2] →* z[0])∧(x[2] →* x[0])∧(y[2] →* y[0])∧(&&(>@z(y[2], z[2]), >@z(x[2], z[2])) →* TRUE))
eval(x0, x1, x2)
Cond_eval5(TRUE, x0, x1, x2)
Cond_eval2(TRUE, x0, x1, x2)
Cond_eval4(TRUE, x0, x1, x2)
Cond_eval(TRUE, x0, x1, x2)
Cond_eval1(TRUE, x0, x1, x2)
Cond_eval3(TRUE, x0, x1, x2)
(1) (EVAL(x[2], y[2], z[2])≥NonInfC∧EVAL(x[2], y[2], z[2])≥COND_EVAL(&&(>@z(y[2], z[2]), >@z(x[2], z[2])), x[2], y[2], z[2])∧(UIncreasing(COND_EVAL(&&(>@z(y[2], z[2]), >@z(x[2], z[2])), x[2], y[2], z[2])), ≥))
(2) ((UIncreasing(COND_EVAL(&&(>@z(y[2], z[2]), >@z(x[2], z[2])), x[2], y[2], z[2])), ≥)∧0 ≥ 0∧0 ≥ 0)
(3) ((UIncreasing(COND_EVAL(&&(>@z(y[2], z[2]), >@z(x[2], z[2])), x[2], y[2], z[2])), ≥)∧0 ≥ 0∧0 ≥ 0)
(4) (0 ≥ 0∧0 ≥ 0∧(UIncreasing(COND_EVAL(&&(>@z(y[2], z[2]), >@z(x[2], z[2])), x[2], y[2], z[2])), ≥))
(5) (0 = 0∧0 = 0∧0 = 0∧0 = 0∧0 = 0∧0 ≥ 0∧0 = 0∧(UIncreasing(COND_EVAL(&&(>@z(y[2], z[2]), >@z(x[2], z[2])), x[2], y[2], z[2])), ≥)∧0 ≥ 0)
(6) (z[2]=z[0]∧z[0]=z[2]1∧x[2]=x[0]∧&&(>@z(y[2], z[2]), >@z(x[2], z[2]))=TRUE∧y[0]=y[2]1∧-@z(x[0], 1@z)=x[2]1∧y[2]=y[0] ⇒ COND_EVAL(TRUE, x[0], y[0], z[0])≥NonInfC∧COND_EVAL(TRUE, x[0], y[0], z[0])≥EVAL(-@z(x[0], 1@z), y[0], z[0])∧(UIncreasing(EVAL(-@z(x[0], 1@z), y[0], z[0])), ≥))
(7) (>@z(y[2], z[2])=TRUE∧>@z(x[2], z[2])=TRUE ⇒ COND_EVAL(TRUE, x[2], y[2], z[2])≥NonInfC∧COND_EVAL(TRUE, x[2], y[2], z[2])≥EVAL(-@z(x[2], 1@z), y[2], z[2])∧(UIncreasing(EVAL(-@z(x[0], 1@z), y[0], z[0])), ≥))
(8) (y[2] + -1 + (-1)z[2] ≥ 0∧-1 + x[2] + (-1)z[2] ≥ 0 ⇒ (UIncreasing(EVAL(-@z(x[0], 1@z), y[0], z[0])), ≥)∧-1 + (-1)Bound + (-1)z[2] + x[2] ≥ 0∧0 ≥ 0)
(9) (y[2] + -1 + (-1)z[2] ≥ 0∧-1 + x[2] + (-1)z[2] ≥ 0 ⇒ (UIncreasing(EVAL(-@z(x[0], 1@z), y[0], z[0])), ≥)∧-1 + (-1)Bound + (-1)z[2] + x[2] ≥ 0∧0 ≥ 0)
(10) (y[2] + -1 + (-1)z[2] ≥ 0∧-1 + x[2] + (-1)z[2] ≥ 0 ⇒ -1 + (-1)Bound + (-1)z[2] + x[2] ≥ 0∧0 ≥ 0∧(UIncreasing(EVAL(-@z(x[0], 1@z), y[0], z[0])), ≥))
(11) (y[2] + -1 + (-1)z[2] ≥ 0∧x[2] ≥ 0 ⇒ (-1)Bound + x[2] ≥ 0∧0 ≥ 0∧(UIncreasing(EVAL(-@z(x[0], 1@z), y[0], z[0])), ≥))
(12) (z[2] ≥ 0∧x[2] ≥ 0 ⇒ (-1)Bound + x[2] ≥ 0∧0 ≥ 0∧(UIncreasing(EVAL(-@z(x[0], 1@z), y[0], z[0])), ≥))
(13) (z[2] ≥ 0∧x[2] ≥ 0∧y[2] ≥ 0 ⇒ (-1)Bound + x[2] ≥ 0∧0 ≥ 0∧(UIncreasing(EVAL(-@z(x[0], 1@z), y[0], z[0])), ≥))
(14) (z[2] ≥ 0∧x[2] ≥ 0∧y[2] ≥ 0 ⇒ (-1)Bound + x[2] ≥ 0∧0 ≥ 0∧(UIncreasing(EVAL(-@z(x[0], 1@z), y[0], z[0])), ≥))
POL(-@z(x1, x2)) = x1 + (-1)x2
POL(TRUE) = 1
POL(&&(x1, x2)) = 1
POL(COND_EVAL(x1, x2, x3, x4)) = (-1)x4 + x2 + (-1)x1
POL(EVAL(x1, x2, x3)) = -1 + (-1)x3 + x1
POL(FALSE) = 1
POL(1@z) = 1
POL(undefined) = -1
POL(>@z(x1, x2)) = -1
COND_EVAL(TRUE, x[0], y[0], z[0]) → EVAL(-@z(x[0], 1@z), y[0], z[0])
COND_EVAL(TRUE, x[0], y[0], z[0]) → EVAL(-@z(x[0], 1@z), y[0], z[0])
EVAL(x[2], y[2], z[2]) → COND_EVAL(&&(>@z(y[2], z[2]), >@z(x[2], z[2])), x[2], y[2], z[2])
&&(FALSE, FALSE)1 ↔ FALSE1
-@z1 ↔
&&(TRUE, TRUE)1 ↔ TRUE1
&&(TRUE, FALSE)1 ↔ FALSE1
&&(FALSE, TRUE)1 ↔ FALSE1
↳ ITRS
↳ ITRStoIDPProof
↳ IDP
↳ UsableRulesProof
↳ IDP
↳ IDPNonInfProof
↳ IDP
↳ IDependencyGraphProof
↳ IDP
↳ IDPNonInfProof
↳ AND
↳ IDP
↳ IDependencyGraphProof
↳ IDP
↳ IDPNonInfProof
↳ AND
↳ IDP
↳ IDependencyGraphProof
↳ IDP
↳ IDPNonInfProof
↳ IDP
↳ IDependencyGraphProof
↳ IDP
↳ IDPNonInfProof
↳ IDP
↳ IDependencyGraphProof
↳ IDP
↳ IDP
z
eval(x0, x1, x2)
Cond_eval5(TRUE, x0, x1, x2)
Cond_eval2(TRUE, x0, x1, x2)
Cond_eval4(TRUE, x0, x1, x2)
Cond_eval(TRUE, x0, x1, x2)
Cond_eval1(TRUE, x0, x1, x2)
Cond_eval3(TRUE, x0, x1, x2)
↳ ITRS
↳ ITRStoIDPProof
↳ IDP
↳ UsableRulesProof
↳ IDP
↳ IDPNonInfProof
↳ IDP
↳ IDependencyGraphProof
↳ IDP
↳ IDPNonInfProof
↳ AND
↳ IDP
↳ IDependencyGraphProof
↳ IDP
↳ IDPNonInfProof
↳ AND
↳ IDP
↳ IDP
↳ IDependencyGraphProof
↳ IDP
z
(0) -> (2), if ((y[0] →* y[2])∧(z[0] →* z[2])∧(-@z(x[0], 1@z) →* x[2]))
(4) -> (2), if ((y[4] →* y[2])∧(z[4] →* z[2])∧(-@z(x[4], 1@z) →* x[2]))
(7) -> (2), if ((y[7] →* y[2])∧(z[7] →* z[2])∧(x[7] →* x[2]))
(2) -> (0), if ((z[2] →* z[0])∧(x[2] →* x[0])∧(y[2] →* y[0])∧(&&(>@z(y[2], z[2]), >@z(x[2], z[2])) →* TRUE))
eval(x0, x1, x2)
Cond_eval5(TRUE, x0, x1, x2)
Cond_eval2(TRUE, x0, x1, x2)
Cond_eval4(TRUE, x0, x1, x2)
Cond_eval(TRUE, x0, x1, x2)
Cond_eval1(TRUE, x0, x1, x2)
Cond_eval3(TRUE, x0, x1, x2)
↳ ITRS
↳ ITRStoIDPProof
↳ IDP
↳ UsableRulesProof
↳ IDP
↳ IDPNonInfProof
↳ IDP
↳ IDependencyGraphProof
↳ IDP
↳ IDPNonInfProof
↳ AND
↳ IDP
↳ IDependencyGraphProof
↳ IDP
↳ IDPNonInfProof
↳ AND
↳ IDP
↳ IDP
↳ IDependencyGraphProof
↳ IDP
↳ IDPNonInfProof
↳ IDP
z
(0) -> (2), if ((y[0] →* y[2])∧(z[0] →* z[2])∧(-@z(x[0], 1@z) →* x[2]))
(2) -> (0), if ((z[2] →* z[0])∧(x[2] →* x[0])∧(y[2] →* y[0])∧(&&(>@z(y[2], z[2]), >@z(x[2], z[2])) →* TRUE))
eval(x0, x1, x2)
Cond_eval5(TRUE, x0, x1, x2)
Cond_eval2(TRUE, x0, x1, x2)
Cond_eval4(TRUE, x0, x1, x2)
Cond_eval(TRUE, x0, x1, x2)
Cond_eval1(TRUE, x0, x1, x2)
Cond_eval3(TRUE, x0, x1, x2)
(1) (EVAL(x[2], y[2], z[2])≥NonInfC∧EVAL(x[2], y[2], z[2])≥COND_EVAL(&&(>@z(y[2], z[2]), >@z(x[2], z[2])), x[2], y[2], z[2])∧(UIncreasing(COND_EVAL(&&(>@z(y[2], z[2]), >@z(x[2], z[2])), x[2], y[2], z[2])), ≥))
(2) ((UIncreasing(COND_EVAL(&&(>@z(y[2], z[2]), >@z(x[2], z[2])), x[2], y[2], z[2])), ≥)∧0 ≥ 0∧0 ≥ 0)
(3) ((UIncreasing(COND_EVAL(&&(>@z(y[2], z[2]), >@z(x[2], z[2])), x[2], y[2], z[2])), ≥)∧0 ≥ 0∧0 ≥ 0)
(4) ((UIncreasing(COND_EVAL(&&(>@z(y[2], z[2]), >@z(x[2], z[2])), x[2], y[2], z[2])), ≥)∧0 ≥ 0∧0 ≥ 0)
(5) (0 ≥ 0∧0 = 0∧0 ≥ 0∧0 = 0∧0 = 0∧0 = 0∧0 = 0∧0 = 0∧(UIncreasing(COND_EVAL(&&(>@z(y[2], z[2]), >@z(x[2], z[2])), x[2], y[2], z[2])), ≥))
(6) (z[2]=z[0]∧z[0]=z[2]1∧x[2]=x[0]∧&&(>@z(y[2], z[2]), >@z(x[2], z[2]))=TRUE∧y[0]=y[2]1∧-@z(x[0], 1@z)=x[2]1∧y[2]=y[0] ⇒ COND_EVAL(TRUE, x[0], y[0], z[0])≥NonInfC∧COND_EVAL(TRUE, x[0], y[0], z[0])≥EVAL(-@z(x[0], 1@z), y[0], z[0])∧(UIncreasing(EVAL(-@z(x[0], 1@z), y[0], z[0])), ≥))
(7) (>@z(y[2], z[2])=TRUE∧>@z(x[2], z[2])=TRUE ⇒ COND_EVAL(TRUE, x[2], y[2], z[2])≥NonInfC∧COND_EVAL(TRUE, x[2], y[2], z[2])≥EVAL(-@z(x[2], 1@z), y[2], z[2])∧(UIncreasing(EVAL(-@z(x[0], 1@z), y[0], z[0])), ≥))
(8) (y[2] + -1 + (-1)z[2] ≥ 0∧-1 + x[2] + (-1)z[2] ≥ 0 ⇒ (UIncreasing(EVAL(-@z(x[0], 1@z), y[0], z[0])), ≥)∧-1 + (-1)Bound + (-1)z[2] + x[2] ≥ 0∧0 ≥ 0)
(9) (y[2] + -1 + (-1)z[2] ≥ 0∧-1 + x[2] + (-1)z[2] ≥ 0 ⇒ (UIncreasing(EVAL(-@z(x[0], 1@z), y[0], z[0])), ≥)∧-1 + (-1)Bound + (-1)z[2] + x[2] ≥ 0∧0 ≥ 0)
(10) (-1 + x[2] + (-1)z[2] ≥ 0∧y[2] + -1 + (-1)z[2] ≥ 0 ⇒ 0 ≥ 0∧-1 + (-1)Bound + (-1)z[2] + x[2] ≥ 0∧(UIncreasing(EVAL(-@z(x[0], 1@z), y[0], z[0])), ≥))
(11) (x[2] ≥ 0∧y[2] + -1 + (-1)z[2] ≥ 0 ⇒ 0 ≥ 0∧(-1)Bound + x[2] ≥ 0∧(UIncreasing(EVAL(-@z(x[0], 1@z), y[0], z[0])), ≥))
(12) (x[2] ≥ 0∧z[2] ≥ 0 ⇒ 0 ≥ 0∧(-1)Bound + x[2] ≥ 0∧(UIncreasing(EVAL(-@z(x[0], 1@z), y[0], z[0])), ≥))
(13) (x[2] ≥ 0∧z[2] ≥ 0∧y[2] ≥ 0 ⇒ 0 ≥ 0∧(-1)Bound + x[2] ≥ 0∧(UIncreasing(EVAL(-@z(x[0], 1@z), y[0], z[0])), ≥))
(14) (x[2] ≥ 0∧z[2] ≥ 0∧y[2] ≥ 0 ⇒ 0 ≥ 0∧(-1)Bound + x[2] ≥ 0∧(UIncreasing(EVAL(-@z(x[0], 1@z), y[0], z[0])), ≥))
POL(-@z(x1, x2)) = x1 + (-1)x2
POL(TRUE) = 0
POL(&&(x1, x2)) = 0
POL(COND_EVAL(x1, x2, x3, x4)) = -1 + (-1)x4 + x2 + (-1)x1
POL(EVAL(x1, x2, x3)) = -1 + (-1)x3 + x1
POL(FALSE) = 1
POL(1@z) = 1
POL(undefined) = -1
POL(>@z(x1, x2)) = -1
COND_EVAL(TRUE, x[0], y[0], z[0]) → EVAL(-@z(x[0], 1@z), y[0], z[0])
COND_EVAL(TRUE, x[0], y[0], z[0]) → EVAL(-@z(x[0], 1@z), y[0], z[0])
EVAL(x[2], y[2], z[2]) → COND_EVAL(&&(>@z(y[2], z[2]), >@z(x[2], z[2])), x[2], y[2], z[2])
FALSE1 → &&(FALSE, FALSE)1
-@z1 ↔
&&(TRUE, TRUE)1 ↔ TRUE1
FALSE1 → &&(FALSE, TRUE)1
FALSE1 → &&(TRUE, FALSE)1
↳ ITRS
↳ ITRStoIDPProof
↳ IDP
↳ UsableRulesProof
↳ IDP
↳ IDPNonInfProof
↳ IDP
↳ IDependencyGraphProof
↳ IDP
↳ IDPNonInfProof
↳ AND
↳ IDP
↳ IDependencyGraphProof
↳ IDP
↳ IDPNonInfProof
↳ AND
↳ IDP
↳ IDP
↳ IDependencyGraphProof
↳ IDP
↳ IDPNonInfProof
↳ IDP
↳ IDependencyGraphProof
↳ IDP
z
eval(x0, x1, x2)
Cond_eval5(TRUE, x0, x1, x2)
Cond_eval2(TRUE, x0, x1, x2)
Cond_eval4(TRUE, x0, x1, x2)
Cond_eval(TRUE, x0, x1, x2)
Cond_eval1(TRUE, x0, x1, x2)
Cond_eval3(TRUE, x0, x1, x2)
↳ ITRS
↳ ITRStoIDPProof
↳ IDP
↳ UsableRulesProof
↳ IDP
↳ IDPNonInfProof
↳ IDP
↳ IDependencyGraphProof
↳ IDP
↳ IDPNonInfProof
↳ AND
↳ IDP
↳ IDP
↳ IDependencyGraphProof
z
(4) -> (6), if ((y[4] →* y[6])∧(z[4] →* z[6])∧(-@z(x[4], 1@z) →* x[6]))
(8) -> (6), if ((-@z(y[8], 1@z) →* y[6])∧(z[8] →* z[6])∧(x[8] →* x[6]))
(8) -> (10), if ((-@z(y[8], 1@z) →* y[10])∧(z[8] →* z[10])∧(x[8] →* x[10]))
(11) -> (3), if ((-@z(y[11], 1@z) →* y[3])∧(z[11] →* z[3])∧(x[11] →* x[3]))
(6) -> (4), if ((z[6] →* z[4])∧(x[6] →* x[4])∧(y[6] →* y[4])∧(>@z(x[6], z[6]) →* TRUE))
(0) -> (6), if ((y[0] →* y[6])∧(z[0] →* z[6])∧(-@z(x[0], 1@z) →* x[6]))
(0) -> (3), if ((y[0] →* y[3])∧(z[0] →* z[3])∧(-@z(x[0], 1@z) →* x[3]))
(8) -> (1), if ((-@z(y[8], 1@z) →* y[1])∧(z[8] →* z[1])∧(x[8] →* x[1]))
(2) -> (0), if ((z[2] →* z[0])∧(x[2] →* x[0])∧(y[2] →* y[0])∧(&&(>@z(y[2], z[2]), >@z(x[2], z[2])) →* TRUE))
(3) -> (8), if ((z[3] →* z[8])∧(x[3] →* x[8])∧(y[3] →* y[8])∧(&&(&&(>@z(x[3], z[3]), >=@z(z[3], x[3])), >@z(y[3], z[3])) →* TRUE))
(11) -> (10), if ((-@z(y[11], 1@z) →* y[10])∧(z[11] →* z[10])∧(x[11] →* x[10]))
(8) -> (2), if ((-@z(y[8], 1@z) →* y[2])∧(z[8] →* z[2])∧(x[8] →* x[2]))
(0) -> (2), if ((y[0] →* y[2])∧(z[0] →* z[2])∧(-@z(x[0], 1@z) →* x[2]))
(4) -> (10), if ((y[4] →* y[10])∧(z[4] →* z[10])∧(-@z(x[4], 1@z) →* x[10]))
(11) -> (6), if ((-@z(y[11], 1@z) →* y[6])∧(z[11] →* z[6])∧(x[11] →* x[6]))
(0) -> (10), if ((y[0] →* y[10])∧(z[0] →* z[10])∧(-@z(x[0], 1@z) →* x[10]))
(4) -> (1), if ((y[4] →* y[1])∧(z[4] →* z[1])∧(-@z(x[4], 1@z) →* x[1]))
(8) -> (3), if ((-@z(y[8], 1@z) →* y[3])∧(z[8] →* z[3])∧(x[8] →* x[3]))
(4) -> (2), if ((y[4] →* y[2])∧(z[4] →* z[2])∧(-@z(x[4], 1@z) →* x[2]))
(4) -> (3), if ((y[4] →* y[3])∧(z[4] →* z[3])∧(-@z(x[4], 1@z) →* x[3]))
(11) -> (1), if ((-@z(y[11], 1@z) →* y[1])∧(z[11] →* z[1])∧(x[11] →* x[1]))
(1) -> (11), if ((z[1] →* z[11])∧(x[1] →* x[11])∧(y[1] →* y[11])∧(&&(>@z(y[1], z[1]), >=@z(z[1], x[1])) →* TRUE))
(0) -> (1), if ((y[0] →* y[1])∧(z[0] →* z[1])∧(-@z(x[0], 1@z) →* x[1]))
(11) -> (2), if ((-@z(y[11], 1@z) →* y[2])∧(z[11] →* z[2])∧(x[11] →* x[2]))
eval(x0, x1, x2)
Cond_eval5(TRUE, x0, x1, x2)
Cond_eval2(TRUE, x0, x1, x2)
Cond_eval4(TRUE, x0, x1, x2)
Cond_eval(TRUE, x0, x1, x2)
Cond_eval1(TRUE, x0, x1, x2)
Cond_eval3(TRUE, x0, x1, x2)
↳ ITRS
↳ ITRStoIDPProof
↳ IDP
↳ UsableRulesProof
↳ IDP
↳ IDPNonInfProof
↳ IDP
↳ IDependencyGraphProof
↳ IDP
↳ IDPNonInfProof
↳ AND
↳ IDP
↳ IDP
↳ IDependencyGraphProof
↳ IDP
↳ IDPNonInfProof
z
(4) -> (6), if ((y[4] →* y[6])∧(z[4] →* z[6])∧(-@z(x[4], 1@z) →* x[6]))
(8) -> (6), if ((-@z(y[8], 1@z) →* y[6])∧(z[8] →* z[6])∧(x[8] →* x[6]))
(11) -> (3), if ((-@z(y[11], 1@z) →* y[3])∧(z[11] →* z[3])∧(x[11] →* x[3]))
(0) -> (6), if ((y[0] →* y[6])∧(z[0] →* z[6])∧(-@z(x[0], 1@z) →* x[6]))
(6) -> (4), if ((z[6] →* z[4])∧(x[6] →* x[4])∧(y[6] →* y[4])∧(>@z(x[6], z[6]) →* TRUE))
(0) -> (3), if ((y[0] →* y[3])∧(z[0] →* z[3])∧(-@z(x[0], 1@z) →* x[3]))
(8) -> (1), if ((-@z(y[8], 1@z) →* y[1])∧(z[8] →* z[1])∧(x[8] →* x[1]))
(2) -> (0), if ((z[2] →* z[0])∧(x[2] →* x[0])∧(y[2] →* y[0])∧(&&(>@z(y[2], z[2]), >@z(x[2], z[2])) →* TRUE))
(3) -> (8), if ((z[3] →* z[8])∧(x[3] →* x[8])∧(y[3] →* y[8])∧(&&(&&(>@z(x[3], z[3]), >=@z(z[3], x[3])), >@z(y[3], z[3])) →* TRUE))
(8) -> (2), if ((-@z(y[8], 1@z) →* y[2])∧(z[8] →* z[2])∧(x[8] →* x[2]))
(0) -> (2), if ((y[0] →* y[2])∧(z[0] →* z[2])∧(-@z(x[0], 1@z) →* x[2]))
(11) -> (6), if ((-@z(y[11], 1@z) →* y[6])∧(z[11] →* z[6])∧(x[11] →* x[6]))
(4) -> (1), if ((y[4] →* y[1])∧(z[4] →* z[1])∧(-@z(x[4], 1@z) →* x[1]))
(8) -> (3), if ((-@z(y[8], 1@z) →* y[3])∧(z[8] →* z[3])∧(x[8] →* x[3]))
(4) -> (2), if ((y[4] →* y[2])∧(z[4] →* z[2])∧(-@z(x[4], 1@z) →* x[2]))
(4) -> (3), if ((y[4] →* y[3])∧(z[4] →* z[3])∧(-@z(x[4], 1@z) →* x[3]))
(11) -> (1), if ((-@z(y[11], 1@z) →* y[1])∧(z[11] →* z[1])∧(x[11] →* x[1]))
(1) -> (11), if ((z[1] →* z[11])∧(x[1] →* x[11])∧(y[1] →* y[11])∧(&&(>@z(y[1], z[1]), >=@z(z[1], x[1])) →* TRUE))
(0) -> (1), if ((y[0] →* y[1])∧(z[0] →* z[1])∧(-@z(x[0], 1@z) →* x[1]))
(11) -> (2), if ((-@z(y[11], 1@z) →* y[2])∧(z[11] →* z[2])∧(x[11] →* x[2]))
eval(x0, x1, x2)
Cond_eval5(TRUE, x0, x1, x2)
Cond_eval2(TRUE, x0, x1, x2)
Cond_eval4(TRUE, x0, x1, x2)
Cond_eval(TRUE, x0, x1, x2)
Cond_eval1(TRUE, x0, x1, x2)
Cond_eval3(TRUE, x0, x1, x2)
(1) (&&(>@z(y[1], z[1]), >=@z(z[1], x[1]))=TRUE∧y[1]=y[11]∧x[1]=x[11]∧z[1]=z[11] ⇒ COND_EVAL1(TRUE, x[11], y[11], z[11])≥NonInfC∧COND_EVAL1(TRUE, x[11], y[11], z[11])≥EVAL(x[11], -@z(y[11], 1@z), z[11])∧(UIncreasing(EVAL(x[11], -@z(y[11], 1@z), z[11])), ≥))
(2) (>@z(y[1], z[1])=TRUE∧>=@z(z[1], x[1])=TRUE ⇒ COND_EVAL1(TRUE, x[1], y[1], z[1])≥NonInfC∧COND_EVAL1(TRUE, x[1], y[1], z[1])≥EVAL(x[1], -@z(y[1], 1@z), z[1])∧(UIncreasing(EVAL(x[11], -@z(y[11], 1@z), z[11])), ≥))
(3) (-1 + y[1] + (-1)z[1] ≥ 0∧z[1] + (-1)x[1] ≥ 0 ⇒ (UIncreasing(EVAL(x[11], -@z(y[11], 1@z), z[11])), ≥)∧0 ≥ 0∧1 ≥ 0)
(4) (-1 + y[1] + (-1)z[1] ≥ 0∧z[1] + (-1)x[1] ≥ 0 ⇒ (UIncreasing(EVAL(x[11], -@z(y[11], 1@z), z[11])), ≥)∧0 ≥ 0∧1 ≥ 0)
(5) (-1 + y[1] + (-1)z[1] ≥ 0∧z[1] + (-1)x[1] ≥ 0 ⇒ 0 ≥ 0∧(UIncreasing(EVAL(x[11], -@z(y[11], 1@z), z[11])), ≥)∧1 ≥ 0)
(6) (-1 + y[1] + (-1)z[1] ≥ 0∧x[1] ≥ 0 ⇒ 0 ≥ 0∧(UIncreasing(EVAL(x[11], -@z(y[11], 1@z), z[11])), ≥)∧1 ≥ 0)
(7) (y[1] ≥ 0∧x[1] ≥ 0 ⇒ 0 ≥ 0∧(UIncreasing(EVAL(x[11], -@z(y[11], 1@z), z[11])), ≥)∧1 ≥ 0)
(8) (y[1] ≥ 0∧x[1] ≥ 0∧z[1] ≥ 0 ⇒ 0 ≥ 0∧(UIncreasing(EVAL(x[11], -@z(y[11], 1@z), z[11])), ≥)∧1 ≥ 0)
(9) (y[1] ≥ 0∧x[1] ≥ 0∧z[1] ≥ 0 ⇒ 0 ≥ 0∧(UIncreasing(EVAL(x[11], -@z(y[11], 1@z), z[11])), ≥)∧1 ≥ 0)
(10) (EVAL(x[1], y[1], z[1])≥NonInfC∧EVAL(x[1], y[1], z[1])≥COND_EVAL1(&&(>@z(y[1], z[1]), >=@z(z[1], x[1])), x[1], y[1], z[1])∧(UIncreasing(COND_EVAL1(&&(>@z(y[1], z[1]), >=@z(z[1], x[1])), x[1], y[1], z[1])), ≥))
(11) ((UIncreasing(COND_EVAL1(&&(>@z(y[1], z[1]), >=@z(z[1], x[1])), x[1], y[1], z[1])), ≥)∧0 ≥ 0∧0 ≥ 0)
(12) ((UIncreasing(COND_EVAL1(&&(>@z(y[1], z[1]), >=@z(z[1], x[1])), x[1], y[1], z[1])), ≥)∧0 ≥ 0∧0 ≥ 0)
(13) (0 ≥ 0∧0 ≥ 0∧(UIncreasing(COND_EVAL1(&&(>@z(y[1], z[1]), >=@z(z[1], x[1])), x[1], y[1], z[1])), ≥))
(14) (0 = 0∧0 ≥ 0∧0 = 0∧0 ≥ 0∧0 = 0∧0 = 0∧(UIncreasing(COND_EVAL1(&&(>@z(y[1], z[1]), >=@z(z[1], x[1])), x[1], y[1], z[1])), ≥)∧0 = 0∧0 = 0)
(15) (z[2]=z[0]∧x[2]=x[0]∧&&(>@z(y[2], z[2]), >@z(x[2], z[2]))=TRUE∧y[2]=y[0] ⇒ COND_EVAL(TRUE, x[0], y[0], z[0])≥NonInfC∧COND_EVAL(TRUE, x[0], y[0], z[0])≥EVAL(-@z(x[0], 1@z), y[0], z[0])∧(UIncreasing(EVAL(-@z(x[0], 1@z), y[0], z[0])), ≥))
(16) (>@z(y[2], z[2])=TRUE∧>@z(x[2], z[2])=TRUE ⇒ COND_EVAL(TRUE, x[2], y[2], z[2])≥NonInfC∧COND_EVAL(TRUE, x[2], y[2], z[2])≥EVAL(-@z(x[2], 1@z), y[2], z[2])∧(UIncreasing(EVAL(-@z(x[0], 1@z), y[0], z[0])), ≥))
(17) (y[2] + -1 + (-1)z[2] ≥ 0∧-1 + x[2] + (-1)z[2] ≥ 0 ⇒ (UIncreasing(EVAL(-@z(x[0], 1@z), y[0], z[0])), ≥)∧0 ≥ 0∧0 ≥ 0)
(18) (y[2] + -1 + (-1)z[2] ≥ 0∧-1 + x[2] + (-1)z[2] ≥ 0 ⇒ (UIncreasing(EVAL(-@z(x[0], 1@z), y[0], z[0])), ≥)∧0 ≥ 0∧0 ≥ 0)
(19) (-1 + x[2] + (-1)z[2] ≥ 0∧y[2] + -1 + (-1)z[2] ≥ 0 ⇒ 0 ≥ 0∧0 ≥ 0∧(UIncreasing(EVAL(-@z(x[0], 1@z), y[0], z[0])), ≥))
(20) (x[2] ≥ 0∧y[2] + -1 + (-1)z[2] ≥ 0 ⇒ 0 ≥ 0∧0 ≥ 0∧(UIncreasing(EVAL(-@z(x[0], 1@z), y[0], z[0])), ≥))
(21) (x[2] ≥ 0∧z[2] ≥ 0 ⇒ 0 ≥ 0∧0 ≥ 0∧(UIncreasing(EVAL(-@z(x[0], 1@z), y[0], z[0])), ≥))
(22) (x[2] ≥ 0∧z[2] ≥ 0∧y[2] ≥ 0 ⇒ 0 ≥ 0∧0 ≥ 0∧(UIncreasing(EVAL(-@z(x[0], 1@z), y[0], z[0])), ≥))
(23) (x[2] ≥ 0∧z[2] ≥ 0∧y[2] ≥ 0 ⇒ 0 ≥ 0∧0 ≥ 0∧(UIncreasing(EVAL(-@z(x[0], 1@z), y[0], z[0])), ≥))
(24) (EVAL(x[2], y[2], z[2])≥NonInfC∧EVAL(x[2], y[2], z[2])≥COND_EVAL(&&(>@z(y[2], z[2]), >@z(x[2], z[2])), x[2], y[2], z[2])∧(UIncreasing(COND_EVAL(&&(>@z(y[2], z[2]), >@z(x[2], z[2])), x[2], y[2], z[2])), ≥))
(25) ((UIncreasing(COND_EVAL(&&(>@z(y[2], z[2]), >@z(x[2], z[2])), x[2], y[2], z[2])), ≥)∧0 ≥ 0∧0 ≥ 0)
(26) ((UIncreasing(COND_EVAL(&&(>@z(y[2], z[2]), >@z(x[2], z[2])), x[2], y[2], z[2])), ≥)∧0 ≥ 0∧0 ≥ 0)
(27) (0 ≥ 0∧(UIncreasing(COND_EVAL(&&(>@z(y[2], z[2]), >@z(x[2], z[2])), x[2], y[2], z[2])), ≥)∧0 ≥ 0)
(28) (0 = 0∧0 = 0∧0 = 0∧0 ≥ 0∧0 = 0∧0 = 0∧(UIncreasing(COND_EVAL(&&(>@z(y[2], z[2]), >@z(x[2], z[2])), x[2], y[2], z[2])), ≥)∧0 ≥ 0∧0 = 0)
(29) (&&(&&(>@z(x[3], z[3]), >=@z(z[3], x[3])), >@z(y[3], z[3]))=TRUE∧z[3]=z[8]∧x[3]=x[8]∧y[3]=y[8] ⇒ COND_EVAL3(TRUE, x[8], y[8], z[8])≥NonInfC∧COND_EVAL3(TRUE, x[8], y[8], z[8])≥EVAL(x[8], -@z(y[8], 1@z), z[8])∧(UIncreasing(EVAL(x[8], -@z(y[8], 1@z), z[8])), ≥))
(30) (>@z(y[3], z[3])=TRUE∧>@z(x[3], z[3])=TRUE∧>=@z(z[3], x[3])=TRUE ⇒ COND_EVAL3(TRUE, x[3], y[3], z[3])≥NonInfC∧COND_EVAL3(TRUE, x[3], y[3], z[3])≥EVAL(x[3], -@z(y[3], 1@z), z[3])∧(UIncreasing(EVAL(x[8], -@z(y[8], 1@z), z[8])), ≥))
(31) (-1 + y[3] + (-1)z[3] ≥ 0∧-1 + x[3] + (-1)z[3] ≥ 0∧z[3] + (-1)x[3] ≥ 0 ⇒ (UIncreasing(EVAL(x[8], -@z(y[8], 1@z), z[8])), ≥)∧-1 + (-1)Bound + (-1)z[3] + y[3] ≥ 0∧-1 ≥ 0)
(32) (-1 + y[3] + (-1)z[3] ≥ 0∧-1 + x[3] + (-1)z[3] ≥ 0∧z[3] + (-1)x[3] ≥ 0 ⇒ (UIncreasing(EVAL(x[8], -@z(y[8], 1@z), z[8])), ≥)∧-1 + (-1)Bound + (-1)z[3] + y[3] ≥ 0∧-1 ≥ 0)
(33) (-1 + y[3] + (-1)z[3] ≥ 0∧z[3] + (-1)x[3] ≥ 0∧-1 + x[3] + (-1)z[3] ≥ 0 ⇒ (UIncreasing(EVAL(x[8], -@z(y[8], 1@z), z[8])), ≥)∧-1 ≥ 0∧-1 + (-1)Bound + (-1)z[3] + y[3] ≥ 0)
(34) (EVAL(x[3], y[3], z[3])≥NonInfC∧EVAL(x[3], y[3], z[3])≥COND_EVAL3(&&(&&(>@z(x[3], z[3]), >=@z(z[3], x[3])), >@z(y[3], z[3])), x[3], y[3], z[3])∧(UIncreasing(COND_EVAL3(&&(&&(>@z(x[3], z[3]), >=@z(z[3], x[3])), >@z(y[3], z[3])), x[3], y[3], z[3])), ≥))
(35) ((UIncreasing(COND_EVAL3(&&(&&(>@z(x[3], z[3]), >=@z(z[3], x[3])), >@z(y[3], z[3])), x[3], y[3], z[3])), ≥)∧0 ≥ 0∧1 ≥ 0)
(36) ((UIncreasing(COND_EVAL3(&&(&&(>@z(x[3], z[3]), >=@z(z[3], x[3])), >@z(y[3], z[3])), x[3], y[3], z[3])), ≥)∧0 ≥ 0∧1 ≥ 0)
(37) (0 ≥ 0∧1 ≥ 0∧(UIncreasing(COND_EVAL3(&&(&&(>@z(x[3], z[3]), >=@z(z[3], x[3])), >@z(y[3], z[3])), x[3], y[3], z[3])), ≥))
(38) (1 ≥ 0∧0 = 0∧0 = 0∧0 = 0∧0 = 0∧0 = 0∧0 = 0∧0 ≥ 0∧(UIncreasing(COND_EVAL3(&&(&&(>@z(x[3], z[3]), >=@z(z[3], x[3])), >@z(y[3], z[3])), x[3], y[3], z[3])), ≥))
(39) (y[6]=y[4]∧x[6]=x[4]∧>@z(x[6], z[6])=TRUE∧z[6]=z[4] ⇒ COND_EVAL4(TRUE, x[4], y[4], z[4])≥NonInfC∧COND_EVAL4(TRUE, x[4], y[4], z[4])≥EVAL(-@z(x[4], 1@z), y[4], z[4])∧(UIncreasing(EVAL(-@z(x[4], 1@z), y[4], z[4])), ≥))
(40) (>@z(x[6], z[6])=TRUE ⇒ COND_EVAL4(TRUE, x[6], y[6], z[6])≥NonInfC∧COND_EVAL4(TRUE, x[6], y[6], z[6])≥EVAL(-@z(x[6], 1@z), y[6], z[6])∧(UIncreasing(EVAL(-@z(x[4], 1@z), y[4], z[4])), ≥))
(41) (x[6] + -1 + (-1)z[6] ≥ 0 ⇒ (UIncreasing(EVAL(-@z(x[4], 1@z), y[4], z[4])), ≥)∧0 ≥ 0∧0 ≥ 0)
(42) (x[6] + -1 + (-1)z[6] ≥ 0 ⇒ (UIncreasing(EVAL(-@z(x[4], 1@z), y[4], z[4])), ≥)∧0 ≥ 0∧0 ≥ 0)
(43) (x[6] + -1 + (-1)z[6] ≥ 0 ⇒ 0 ≥ 0∧0 ≥ 0∧(UIncreasing(EVAL(-@z(x[4], 1@z), y[4], z[4])), ≥))
(44) (x[6] + -1 + (-1)z[6] ≥ 0 ⇒ 0 = 0∧0 = 0∧0 ≥ 0∧0 ≥ 0∧(UIncreasing(EVAL(-@z(x[4], 1@z), y[4], z[4])), ≥))
(45) (x[6] ≥ 0 ⇒ 0 = 0∧0 = 0∧0 ≥ 0∧0 ≥ 0∧(UIncreasing(EVAL(-@z(x[4], 1@z), y[4], z[4])), ≥))
(46) (x[6] ≥ 0∧z[6] ≥ 0 ⇒ 0 = 0∧0 = 0∧0 ≥ 0∧0 ≥ 0∧(UIncreasing(EVAL(-@z(x[4], 1@z), y[4], z[4])), ≥))
(47) (x[6] ≥ 0∧z[6] ≥ 0 ⇒ 0 = 0∧0 = 0∧0 ≥ 0∧0 ≥ 0∧(UIncreasing(EVAL(-@z(x[4], 1@z), y[4], z[4])), ≥))
(48) (EVAL(x[6], y[6], z[6])≥NonInfC∧EVAL(x[6], y[6], z[6])≥COND_EVAL4(>@z(x[6], z[6]), x[6], y[6], z[6])∧(UIncreasing(COND_EVAL4(>@z(x[6], z[6]), x[6], y[6], z[6])), ≥))
(49) ((UIncreasing(COND_EVAL4(>@z(x[6], z[6]), x[6], y[6], z[6])), ≥)∧0 ≥ 0∧0 ≥ 0)
(50) ((UIncreasing(COND_EVAL4(>@z(x[6], z[6]), x[6], y[6], z[6])), ≥)∧0 ≥ 0∧0 ≥ 0)
(51) ((UIncreasing(COND_EVAL4(>@z(x[6], z[6]), x[6], y[6], z[6])), ≥)∧0 ≥ 0∧0 ≥ 0)
(52) (0 = 0∧0 = 0∧0 = 0∧0 ≥ 0∧0 = 0∧0 ≥ 0∧0 = 0∧(UIncreasing(COND_EVAL4(>@z(x[6], z[6]), x[6], y[6], z[6])), ≥)∧0 = 0)
POL(-@z(x1, x2)) = x1 + (-1)x2
POL(COND_EVAL3(x1, x2, x3, x4)) = (-1)x4 + x3 + x1
POL(TRUE) = -1
POL(&&(x1, x2)) = -1
POL(EVAL(x1, x2, x3)) = (-1)x3 + x2
POL(FALSE) = -1
POL(>@z(x1, x2)) = -1
POL(>=@z(x1, x2)) = -1
POL(COND_EVAL1(x1, x2, x3, x4)) = -1 + (-1)x4 + x3 + (-1)x1
POL(COND_EVAL(x1, x2, x3, x4)) = -1 + (-1)x4 + x3 + (-1)x1
POL(COND_EVAL4(x1, x2, x3, x4)) = (-1)x4 + x3
POL(1@z) = 1
POL(undefined) = -1
COND_EVAL3(TRUE, x[8], y[8], z[8]) → EVAL(x[8], -@z(y[8], 1@z), z[8])
COND_EVAL3(TRUE, x[8], y[8], z[8]) → EVAL(x[8], -@z(y[8], 1@z), z[8])
COND_EVAL1(TRUE, x[11], y[11], z[11]) → EVAL(x[11], -@z(y[11], 1@z), z[11])
EVAL(x[1], y[1], z[1]) → COND_EVAL1(&&(>@z(y[1], z[1]), >=@z(z[1], x[1])), x[1], y[1], z[1])
COND_EVAL(TRUE, x[0], y[0], z[0]) → EVAL(-@z(x[0], 1@z), y[0], z[0])
EVAL(x[2], y[2], z[2]) → COND_EVAL(&&(>@z(y[2], z[2]), >@z(x[2], z[2])), x[2], y[2], z[2])
EVAL(x[3], y[3], z[3]) → COND_EVAL3(&&(&&(>@z(x[3], z[3]), >=@z(z[3], x[3])), >@z(y[3], z[3])), x[3], y[3], z[3])
COND_EVAL4(TRUE, x[4], y[4], z[4]) → EVAL(-@z(x[4], 1@z), y[4], z[4])
EVAL(x[6], y[6], z[6]) → COND_EVAL4(>@z(x[6], z[6]), x[6], y[6], z[6])
&&(FALSE, FALSE)1 ↔ FALSE1
-@z1 ↔
&&(TRUE, TRUE)1 ↔ TRUE1
&&(FALSE, TRUE)1 ↔ FALSE1
&&(TRUE, FALSE)1 ↔ FALSE1
↳ ITRS
↳ ITRStoIDPProof
↳ IDP
↳ UsableRulesProof
↳ IDP
↳ IDPNonInfProof
↳ IDP
↳ IDependencyGraphProof
↳ IDP
↳ IDPNonInfProof
↳ AND
↳ IDP
↳ IDP
↳ IDependencyGraphProof
↳ IDP
↳ IDPNonInfProof
↳ IDP
↳ IDependencyGraphProof
z
(4) -> (6), if ((y[4] →* y[6])∧(z[4] →* z[6])∧(-@z(x[4], 1@z) →* x[6]))
(11) -> (3), if ((-@z(y[11], 1@z) →* y[3])∧(z[11] →* z[3])∧(x[11] →* x[3]))
(0) -> (6), if ((y[0] →* y[6])∧(z[0] →* z[6])∧(-@z(x[0], 1@z) →* x[6]))
(6) -> (4), if ((z[6] →* z[4])∧(x[6] →* x[4])∧(y[6] →* y[4])∧(>@z(x[6], z[6]) →* TRUE))
(0) -> (3), if ((y[0] →* y[3])∧(z[0] →* z[3])∧(-@z(x[0], 1@z) →* x[3]))
(2) -> (0), if ((z[2] →* z[0])∧(x[2] →* x[0])∧(y[2] →* y[0])∧(&&(>@z(y[2], z[2]), >@z(x[2], z[2])) →* TRUE))
(0) -> (2), if ((y[0] →* y[2])∧(z[0] →* z[2])∧(-@z(x[0], 1@z) →* x[2]))
(11) -> (6), if ((-@z(y[11], 1@z) →* y[6])∧(z[11] →* z[6])∧(x[11] →* x[6]))
(4) -> (1), if ((y[4] →* y[1])∧(z[4] →* z[1])∧(-@z(x[4], 1@z) →* x[1]))
(4) -> (2), if ((y[4] →* y[2])∧(z[4] →* z[2])∧(-@z(x[4], 1@z) →* x[2]))
(4) -> (3), if ((y[4] →* y[3])∧(z[4] →* z[3])∧(-@z(x[4], 1@z) →* x[3]))
(11) -> (1), if ((-@z(y[11], 1@z) →* y[1])∧(z[11] →* z[1])∧(x[11] →* x[1]))
(1) -> (11), if ((z[1] →* z[11])∧(x[1] →* x[11])∧(y[1] →* y[11])∧(&&(>@z(y[1], z[1]), >=@z(z[1], x[1])) →* TRUE))
(0) -> (1), if ((y[0] →* y[1])∧(z[0] →* z[1])∧(-@z(x[0], 1@z) →* x[1]))
(11) -> (2), if ((-@z(y[11], 1@z) →* y[2])∧(z[11] →* z[2])∧(x[11] →* x[2]))
eval(x0, x1, x2)
Cond_eval5(TRUE, x0, x1, x2)
Cond_eval2(TRUE, x0, x1, x2)
Cond_eval4(TRUE, x0, x1, x2)
Cond_eval(TRUE, x0, x1, x2)
Cond_eval1(TRUE, x0, x1, x2)
Cond_eval3(TRUE, x0, x1, x2)
↳ ITRS
↳ ITRStoIDPProof
↳ IDP
↳ UsableRulesProof
↳ IDP
↳ IDPNonInfProof
↳ IDP
↳ IDependencyGraphProof
↳ IDP
↳ IDPNonInfProof
↳ AND
↳ IDP
↳ IDP
↳ IDependencyGraphProof
↳ IDP
↳ IDPNonInfProof
↳ IDP
↳ IDependencyGraphProof
↳ IDP
↳ IDPNonInfProof
z
(0) -> (2), if ((y[0] →* y[2])∧(z[0] →* z[2])∧(-@z(x[0], 1@z) →* x[2]))
(4) -> (6), if ((y[4] →* y[6])∧(z[4] →* z[6])∧(-@z(x[4], 1@z) →* x[6]))
(11) -> (6), if ((-@z(y[11], 1@z) →* y[6])∧(z[11] →* z[6])∧(x[11] →* x[6]))
(4) -> (1), if ((y[4] →* y[1])∧(z[4] →* z[1])∧(-@z(x[4], 1@z) →* x[1]))
(4) -> (2), if ((y[4] →* y[2])∧(z[4] →* z[2])∧(-@z(x[4], 1@z) →* x[2]))
(6) -> (4), if ((z[6] →* z[4])∧(x[6] →* x[4])∧(y[6] →* y[4])∧(>@z(x[6], z[6]) →* TRUE))
(0) -> (6), if ((y[0] →* y[6])∧(z[0] →* z[6])∧(-@z(x[0], 1@z) →* x[6]))
(11) -> (1), if ((-@z(y[11], 1@z) →* y[1])∧(z[11] →* z[1])∧(x[11] →* x[1]))
(1) -> (11), if ((z[1] →* z[11])∧(x[1] →* x[11])∧(y[1] →* y[11])∧(&&(>@z(y[1], z[1]), >=@z(z[1], x[1])) →* TRUE))
(0) -> (1), if ((y[0] →* y[1])∧(z[0] →* z[1])∧(-@z(x[0], 1@z) →* x[1]))
(2) -> (0), if ((z[2] →* z[0])∧(x[2] →* x[0])∧(y[2] →* y[0])∧(&&(>@z(y[2], z[2]), >@z(x[2], z[2])) →* TRUE))
(11) -> (2), if ((-@z(y[11], 1@z) →* y[2])∧(z[11] →* z[2])∧(x[11] →* x[2]))
eval(x0, x1, x2)
Cond_eval5(TRUE, x0, x1, x2)
Cond_eval2(TRUE, x0, x1, x2)
Cond_eval4(TRUE, x0, x1, x2)
Cond_eval(TRUE, x0, x1, x2)
Cond_eval1(TRUE, x0, x1, x2)
Cond_eval3(TRUE, x0, x1, x2)
(1) (&&(>@z(y[1], z[1]), >=@z(z[1], x[1]))=TRUE∧x[11]=x[6]∧z[11]=z[6]∧y[1]=y[11]∧-@z(y[11], 1@z)=y[6]∧x[1]=x[11]∧z[1]=z[11] ⇒ COND_EVAL1(TRUE, x[11], y[11], z[11])≥NonInfC∧COND_EVAL1(TRUE, x[11], y[11], z[11])≥EVAL(x[11], -@z(y[11], 1@z), z[11])∧(UIncreasing(EVAL(x[11], -@z(y[11], 1@z), z[11])), ≥))
(2) (>@z(y[1], z[1])=TRUE∧>=@z(z[1], x[1])=TRUE ⇒ COND_EVAL1(TRUE, x[1], y[1], z[1])≥NonInfC∧COND_EVAL1(TRUE, x[1], y[1], z[1])≥EVAL(x[1], -@z(y[1], 1@z), z[1])∧(UIncreasing(EVAL(x[11], -@z(y[11], 1@z), z[11])), ≥))
(3) (-1 + y[1] + (-1)z[1] ≥ 0∧z[1] + (-1)x[1] ≥ 0 ⇒ (UIncreasing(EVAL(x[11], -@z(y[11], 1@z), z[11])), ≥)∧0 ≥ 0∧0 ≥ 0)
(4) (-1 + y[1] + (-1)z[1] ≥ 0∧z[1] + (-1)x[1] ≥ 0 ⇒ (UIncreasing(EVAL(x[11], -@z(y[11], 1@z), z[11])), ≥)∧0 ≥ 0∧0 ≥ 0)
(5) (z[1] + (-1)x[1] ≥ 0∧-1 + y[1] + (-1)z[1] ≥ 0 ⇒ 0 ≥ 0∧0 ≥ 0∧(UIncreasing(EVAL(x[11], -@z(y[11], 1@z), z[11])), ≥))
(6) (x[1] ≥ 0∧-1 + y[1] + (-1)z[1] ≥ 0 ⇒ 0 ≥ 0∧0 ≥ 0∧(UIncreasing(EVAL(x[11], -@z(y[11], 1@z), z[11])), ≥))
(7) (x[1] ≥ 0∧y[1] ≥ 0 ⇒ 0 ≥ 0∧0 ≥ 0∧(UIncreasing(EVAL(x[11], -@z(y[11], 1@z), z[11])), ≥))
(8) (x[1] ≥ 0∧y[1] ≥ 0∧z[1] ≥ 0 ⇒ 0 ≥ 0∧0 ≥ 0∧(UIncreasing(EVAL(x[11], -@z(y[11], 1@z), z[11])), ≥))
(9) (x[1] ≥ 0∧y[1] ≥ 0∧z[1] ≥ 0 ⇒ 0 ≥ 0∧0 ≥ 0∧(UIncreasing(EVAL(x[11], -@z(y[11], 1@z), z[11])), ≥))
(10) (&&(>@z(y[1], z[1]), >=@z(z[1], x[1]))=TRUE∧z[11]=z[2]∧y[1]=y[11]∧x[1]=x[11]∧z[1]=z[11]∧x[11]=x[2]∧-@z(y[11], 1@z)=y[2] ⇒ COND_EVAL1(TRUE, x[11], y[11], z[11])≥NonInfC∧COND_EVAL1(TRUE, x[11], y[11], z[11])≥EVAL(x[11], -@z(y[11], 1@z), z[11])∧(UIncreasing(EVAL(x[11], -@z(y[11], 1@z), z[11])), ≥))
(11) (>@z(y[1], z[1])=TRUE∧>=@z(z[1], x[1])=TRUE ⇒ COND_EVAL1(TRUE, x[1], y[1], z[1])≥NonInfC∧COND_EVAL1(TRUE, x[1], y[1], z[1])≥EVAL(x[1], -@z(y[1], 1@z), z[1])∧(UIncreasing(EVAL(x[11], -@z(y[11], 1@z), z[11])), ≥))
(12) (-1 + y[1] + (-1)z[1] ≥ 0∧z[1] + (-1)x[1] ≥ 0 ⇒ (UIncreasing(EVAL(x[11], -@z(y[11], 1@z), z[11])), ≥)∧0 ≥ 0∧0 ≥ 0)
(13) (-1 + y[1] + (-1)z[1] ≥ 0∧z[1] + (-1)x[1] ≥ 0 ⇒ (UIncreasing(EVAL(x[11], -@z(y[11], 1@z), z[11])), ≥)∧0 ≥ 0∧0 ≥ 0)
(14) (-1 + y[1] + (-1)z[1] ≥ 0∧z[1] + (-1)x[1] ≥ 0 ⇒ 0 ≥ 0∧0 ≥ 0∧(UIncreasing(EVAL(x[11], -@z(y[11], 1@z), z[11])), ≥))
(15) (-1 + y[1] + (-1)z[1] ≥ 0∧x[1] ≥ 0 ⇒ 0 ≥ 0∧0 ≥ 0∧(UIncreasing(EVAL(x[11], -@z(y[11], 1@z), z[11])), ≥))
(16) (y[1] ≥ 0∧x[1] ≥ 0 ⇒ 0 ≥ 0∧0 ≥ 0∧(UIncreasing(EVAL(x[11], -@z(y[11], 1@z), z[11])), ≥))
(17) (y[1] ≥ 0∧x[1] ≥ 0∧z[1] ≥ 0 ⇒ 0 ≥ 0∧0 ≥ 0∧(UIncreasing(EVAL(x[11], -@z(y[11], 1@z), z[11])), ≥))
(18) (y[1] ≥ 0∧x[1] ≥ 0∧z[1] ≥ 0 ⇒ 0 ≥ 0∧0 ≥ 0∧(UIncreasing(EVAL(x[11], -@z(y[11], 1@z), z[11])), ≥))
(19) (-@z(y[11], 1@z)=y[1]1∧&&(>@z(y[1], z[1]), >=@z(z[1], x[1]))=TRUE∧x[11]=x[1]1∧y[1]=y[11]∧x[1]=x[11]∧z[1]=z[11]∧z[11]=z[1]1 ⇒ COND_EVAL1(TRUE, x[11], y[11], z[11])≥NonInfC∧COND_EVAL1(TRUE, x[11], y[11], z[11])≥EVAL(x[11], -@z(y[11], 1@z), z[11])∧(UIncreasing(EVAL(x[11], -@z(y[11], 1@z), z[11])), ≥))
(20) (>@z(y[1], z[1])=TRUE∧>=@z(z[1], x[1])=TRUE ⇒ COND_EVAL1(TRUE, x[1], y[1], z[1])≥NonInfC∧COND_EVAL1(TRUE, x[1], y[1], z[1])≥EVAL(x[1], -@z(y[1], 1@z), z[1])∧(UIncreasing(EVAL(x[11], -@z(y[11], 1@z), z[11])), ≥))
(21) (-1 + y[1] + (-1)z[1] ≥ 0∧z[1] + (-1)x[1] ≥ 0 ⇒ (UIncreasing(EVAL(x[11], -@z(y[11], 1@z), z[11])), ≥)∧0 ≥ 0∧0 ≥ 0)
(22) (-1 + y[1] + (-1)z[1] ≥ 0∧z[1] + (-1)x[1] ≥ 0 ⇒ (UIncreasing(EVAL(x[11], -@z(y[11], 1@z), z[11])), ≥)∧0 ≥ 0∧0 ≥ 0)
(23) (z[1] + (-1)x[1] ≥ 0∧-1 + y[1] + (-1)z[1] ≥ 0 ⇒ 0 ≥ 0∧0 ≥ 0∧(UIncreasing(EVAL(x[11], -@z(y[11], 1@z), z[11])), ≥))
(24) (x[1] ≥ 0∧-1 + y[1] + (-1)z[1] ≥ 0 ⇒ 0 ≥ 0∧0 ≥ 0∧(UIncreasing(EVAL(x[11], -@z(y[11], 1@z), z[11])), ≥))
(25) (x[1] ≥ 0∧y[1] ≥ 0 ⇒ 0 ≥ 0∧0 ≥ 0∧(UIncreasing(EVAL(x[11], -@z(y[11], 1@z), z[11])), ≥))
(26) (x[1] ≥ 0∧y[1] ≥ 0∧z[1] ≥ 0 ⇒ 0 ≥ 0∧0 ≥ 0∧(UIncreasing(EVAL(x[11], -@z(y[11], 1@z), z[11])), ≥))
(27) (x[1] ≥ 0∧y[1] ≥ 0∧z[1] ≥ 0 ⇒ 0 ≥ 0∧0 ≥ 0∧(UIncreasing(EVAL(x[11], -@z(y[11], 1@z), z[11])), ≥))
(28) (EVAL(x[1], y[1], z[1])≥NonInfC∧EVAL(x[1], y[1], z[1])≥COND_EVAL1(&&(>@z(y[1], z[1]), >=@z(z[1], x[1])), x[1], y[1], z[1])∧(UIncreasing(COND_EVAL1(&&(>@z(y[1], z[1]), >=@z(z[1], x[1])), x[1], y[1], z[1])), ≥))
(29) ((UIncreasing(COND_EVAL1(&&(>@z(y[1], z[1]), >=@z(z[1], x[1])), x[1], y[1], z[1])), ≥)∧0 ≥ 0∧0 ≥ 0)
(30) ((UIncreasing(COND_EVAL1(&&(>@z(y[1], z[1]), >=@z(z[1], x[1])), x[1], y[1], z[1])), ≥)∧0 ≥ 0∧0 ≥ 0)
(31) (0 ≥ 0∧(UIncreasing(COND_EVAL1(&&(>@z(y[1], z[1]), >=@z(z[1], x[1])), x[1], y[1], z[1])), ≥)∧0 ≥ 0)
(32) (0 ≥ 0∧0 = 0∧0 = 0∧0 = 0∧0 = 0∧0 = 0∧0 ≥ 0∧(UIncreasing(COND_EVAL1(&&(>@z(y[1], z[1]), >=@z(z[1], x[1])), x[1], y[1], z[1])), ≥)∧0 = 0)
(33) (-@z(x[0], 1@z)=x[1]∧z[2]=z[0]∧x[2]=x[0]∧&&(>@z(y[2], z[2]), >@z(x[2], z[2]))=TRUE∧y[2]=y[0]∧y[0]=y[1]∧z[0]=z[1] ⇒ COND_EVAL(TRUE, x[0], y[0], z[0])≥NonInfC∧COND_EVAL(TRUE, x[0], y[0], z[0])≥EVAL(-@z(x[0], 1@z), y[0], z[0])∧(UIncreasing(EVAL(-@z(x[0], 1@z), y[0], z[0])), ≥))
(34) (>@z(y[2], z[2])=TRUE∧>@z(x[2], z[2])=TRUE ⇒ COND_EVAL(TRUE, x[2], y[2], z[2])≥NonInfC∧COND_EVAL(TRUE, x[2], y[2], z[2])≥EVAL(-@z(x[2], 1@z), y[2], z[2])∧(UIncreasing(EVAL(-@z(x[0], 1@z), y[0], z[0])), ≥))
(35) (y[2] + -1 + (-1)z[2] ≥ 0∧-1 + x[2] + (-1)z[2] ≥ 0 ⇒ (UIncreasing(EVAL(-@z(x[0], 1@z), y[0], z[0])), ≥)∧0 ≥ 0∧1 ≥ 0)
(36) (y[2] + -1 + (-1)z[2] ≥ 0∧-1 + x[2] + (-1)z[2] ≥ 0 ⇒ (UIncreasing(EVAL(-@z(x[0], 1@z), y[0], z[0])), ≥)∧0 ≥ 0∧1 ≥ 0)
(37) (-1 + x[2] + (-1)z[2] ≥ 0∧y[2] + -1 + (-1)z[2] ≥ 0 ⇒ 0 ≥ 0∧1 ≥ 0∧(UIncreasing(EVAL(-@z(x[0], 1@z), y[0], z[0])), ≥))
(38) (x[2] ≥ 0∧y[2] + -1 + (-1)z[2] ≥ 0 ⇒ 0 ≥ 0∧1 ≥ 0∧(UIncreasing(EVAL(-@z(x[0], 1@z), y[0], z[0])), ≥))
(39) (x[2] ≥ 0∧z[2] ≥ 0 ⇒ 0 ≥ 0∧1 ≥ 0∧(UIncreasing(EVAL(-@z(x[0], 1@z), y[0], z[0])), ≥))
(40) (x[2] ≥ 0∧z[2] ≥ 0∧y[2] ≥ 0 ⇒ 0 ≥ 0∧1 ≥ 0∧(UIncreasing(EVAL(-@z(x[0], 1@z), y[0], z[0])), ≥))
(41) (x[2] ≥ 0∧z[2] ≥ 0∧y[2] ≥ 0 ⇒ 0 ≥ 0∧1 ≥ 0∧(UIncreasing(EVAL(-@z(x[0], 1@z), y[0], z[0])), ≥))
(42) (z[2]=z[0]∧x[2]=x[0]∧y[0]=y[6]∧-@z(x[0], 1@z)=x[6]∧&&(>@z(y[2], z[2]), >@z(x[2], z[2]))=TRUE∧y[2]=y[0]∧z[0]=z[6] ⇒ COND_EVAL(TRUE, x[0], y[0], z[0])≥NonInfC∧COND_EVAL(TRUE, x[0], y[0], z[0])≥EVAL(-@z(x[0], 1@z), y[0], z[0])∧(UIncreasing(EVAL(-@z(x[0], 1@z), y[0], z[0])), ≥))
(43) (>@z(y[2], z[2])=TRUE∧>@z(x[2], z[2])=TRUE ⇒ COND_EVAL(TRUE, x[2], y[2], z[2])≥NonInfC∧COND_EVAL(TRUE, x[2], y[2], z[2])≥EVAL(-@z(x[2], 1@z), y[2], z[2])∧(UIncreasing(EVAL(-@z(x[0], 1@z), y[0], z[0])), ≥))
(44) (y[2] + -1 + (-1)z[2] ≥ 0∧-1 + x[2] + (-1)z[2] ≥ 0 ⇒ (UIncreasing(EVAL(-@z(x[0], 1@z), y[0], z[0])), ≥)∧0 ≥ 0∧1 ≥ 0)
(45) (y[2] + -1 + (-1)z[2] ≥ 0∧-1 + x[2] + (-1)z[2] ≥ 0 ⇒ (UIncreasing(EVAL(-@z(x[0], 1@z), y[0], z[0])), ≥)∧0 ≥ 0∧1 ≥ 0)
(46) (y[2] + -1 + (-1)z[2] ≥ 0∧-1 + x[2] + (-1)z[2] ≥ 0 ⇒ 1 ≥ 0∧0 ≥ 0∧(UIncreasing(EVAL(-@z(x[0], 1@z), y[0], z[0])), ≥))
(47) (y[2] + -1 + (-1)z[2] ≥ 0∧x[2] ≥ 0 ⇒ 1 ≥ 0∧0 ≥ 0∧(UIncreasing(EVAL(-@z(x[0], 1@z), y[0], z[0])), ≥))
(48) (z[2] ≥ 0∧x[2] ≥ 0 ⇒ 1 ≥ 0∧0 ≥ 0∧(UIncreasing(EVAL(-@z(x[0], 1@z), y[0], z[0])), ≥))
(49) (z[2] ≥ 0∧x[2] ≥ 0∧y[2] ≥ 0 ⇒ 1 ≥ 0∧0 ≥ 0∧(UIncreasing(EVAL(-@z(x[0], 1@z), y[0], z[0])), ≥))
(50) (z[2] ≥ 0∧x[2] ≥ 0∧y[2] ≥ 0 ⇒ 1 ≥ 0∧0 ≥ 0∧(UIncreasing(EVAL(-@z(x[0], 1@z), y[0], z[0])), ≥))
(51) (z[2]=z[0]∧z[0]=z[2]1∧x[2]=x[0]∧&&(>@z(y[2], z[2]), >@z(x[2], z[2]))=TRUE∧y[0]=y[2]1∧-@z(x[0], 1@z)=x[2]1∧y[2]=y[0] ⇒ COND_EVAL(TRUE, x[0], y[0], z[0])≥NonInfC∧COND_EVAL(TRUE, x[0], y[0], z[0])≥EVAL(-@z(x[0], 1@z), y[0], z[0])∧(UIncreasing(EVAL(-@z(x[0], 1@z), y[0], z[0])), ≥))
(52) (>@z(y[2], z[2])=TRUE∧>@z(x[2], z[2])=TRUE ⇒ COND_EVAL(TRUE, x[2], y[2], z[2])≥NonInfC∧COND_EVAL(TRUE, x[2], y[2], z[2])≥EVAL(-@z(x[2], 1@z), y[2], z[2])∧(UIncreasing(EVAL(-@z(x[0], 1@z), y[0], z[0])), ≥))
(53) (y[2] + -1 + (-1)z[2] ≥ 0∧-1 + x[2] + (-1)z[2] ≥ 0 ⇒ (UIncreasing(EVAL(-@z(x[0], 1@z), y[0], z[0])), ≥)∧0 ≥ 0∧1 ≥ 0)
(54) (y[2] + -1 + (-1)z[2] ≥ 0∧-1 + x[2] + (-1)z[2] ≥ 0 ⇒ (UIncreasing(EVAL(-@z(x[0], 1@z), y[0], z[0])), ≥)∧0 ≥ 0∧1 ≥ 0)
(55) (y[2] + -1 + (-1)z[2] ≥ 0∧-1 + x[2] + (-1)z[2] ≥ 0 ⇒ 1 ≥ 0∧0 ≥ 0∧(UIncreasing(EVAL(-@z(x[0], 1@z), y[0], z[0])), ≥))
(56) (y[2] + -1 + (-1)z[2] ≥ 0∧x[2] ≥ 0 ⇒ 1 ≥ 0∧0 ≥ 0∧(UIncreasing(EVAL(-@z(x[0], 1@z), y[0], z[0])), ≥))
(57) (z[2] ≥ 0∧x[2] ≥ 0 ⇒ 1 ≥ 0∧0 ≥ 0∧(UIncreasing(EVAL(-@z(x[0], 1@z), y[0], z[0])), ≥))
(58) (z[2] ≥ 0∧x[2] ≥ 0∧y[2] ≥ 0 ⇒ 1 ≥ 0∧0 ≥ 0∧(UIncreasing(EVAL(-@z(x[0], 1@z), y[0], z[0])), ≥))
(59) (z[2] ≥ 0∧x[2] ≥ 0∧y[2] ≥ 0 ⇒ 1 ≥ 0∧0 ≥ 0∧(UIncreasing(EVAL(-@z(x[0], 1@z), y[0], z[0])), ≥))
(60) (EVAL(x[2], y[2], z[2])≥NonInfC∧EVAL(x[2], y[2], z[2])≥COND_EVAL(&&(>@z(y[2], z[2]), >@z(x[2], z[2])), x[2], y[2], z[2])∧(UIncreasing(COND_EVAL(&&(>@z(y[2], z[2]), >@z(x[2], z[2])), x[2], y[2], z[2])), ≥))
(61) ((UIncreasing(COND_EVAL(&&(>@z(y[2], z[2]), >@z(x[2], z[2])), x[2], y[2], z[2])), ≥)∧0 ≥ 0∧0 ≥ 0)
(62) ((UIncreasing(COND_EVAL(&&(>@z(y[2], z[2]), >@z(x[2], z[2])), x[2], y[2], z[2])), ≥)∧0 ≥ 0∧0 ≥ 0)
(63) (0 ≥ 0∧0 ≥ 0∧(UIncreasing(COND_EVAL(&&(>@z(y[2], z[2]), >@z(x[2], z[2])), x[2], y[2], z[2])), ≥))
(64) (0 = 0∧0 = 0∧0 = 0∧0 = 0∧0 = 0∧0 ≥ 0∧0 = 0∧(UIncreasing(COND_EVAL(&&(>@z(y[2], z[2]), >@z(x[2], z[2])), x[2], y[2], z[2])), ≥)∧0 ≥ 0)
(65) (z[4]=z[2]∧-@z(x[4], 1@z)=x[2]∧y[6]=y[4]∧y[4]=y[2]∧x[6]=x[4]∧>@z(x[6], z[6])=TRUE∧z[6]=z[4] ⇒ COND_EVAL4(TRUE, x[4], y[4], z[4])≥NonInfC∧COND_EVAL4(TRUE, x[4], y[4], z[4])≥EVAL(-@z(x[4], 1@z), y[4], z[4])∧(UIncreasing(EVAL(-@z(x[4], 1@z), y[4], z[4])), ≥))
(66) (>@z(x[6], z[6])=TRUE ⇒ COND_EVAL4(TRUE, x[6], y[6], z[6])≥NonInfC∧COND_EVAL4(TRUE, x[6], y[6], z[6])≥EVAL(-@z(x[6], 1@z), y[6], z[6])∧(UIncreasing(EVAL(-@z(x[4], 1@z), y[4], z[4])), ≥))
(67) (x[6] + -1 + (-1)z[6] ≥ 0 ⇒ (UIncreasing(EVAL(-@z(x[4], 1@z), y[4], z[4])), ≥)∧-1 + (-1)Bound + (-1)z[6] + x[6] ≥ 0∧0 ≥ 0)
(68) (x[6] + -1 + (-1)z[6] ≥ 0 ⇒ (UIncreasing(EVAL(-@z(x[4], 1@z), y[4], z[4])), ≥)∧-1 + (-1)Bound + (-1)z[6] + x[6] ≥ 0∧0 ≥ 0)
(69) (x[6] + -1 + (-1)z[6] ≥ 0 ⇒ 0 ≥ 0∧-1 + (-1)Bound + (-1)z[6] + x[6] ≥ 0∧(UIncreasing(EVAL(-@z(x[4], 1@z), y[4], z[4])), ≥))
(70) (x[6] + -1 + (-1)z[6] ≥ 0 ⇒ 0 = 0∧0 ≥ 0∧-1 + (-1)Bound + (-1)z[6] + x[6] ≥ 0∧0 = 0∧(UIncreasing(EVAL(-@z(x[4], 1@z), y[4], z[4])), ≥))
(71) (x[6] ≥ 0 ⇒ 0 = 0∧0 ≥ 0∧(-1)Bound + x[6] ≥ 0∧0 = 0∧(UIncreasing(EVAL(-@z(x[4], 1@z), y[4], z[4])), ≥))
(72) (x[6] ≥ 0∧z[6] ≥ 0 ⇒ 0 = 0∧0 ≥ 0∧(-1)Bound + x[6] ≥ 0∧0 = 0∧(UIncreasing(EVAL(-@z(x[4], 1@z), y[4], z[4])), ≥))
(73) (x[6] ≥ 0∧z[6] ≥ 0 ⇒ 0 = 0∧0 ≥ 0∧(-1)Bound + x[6] ≥ 0∧0 = 0∧(UIncreasing(EVAL(-@z(x[4], 1@z), y[4], z[4])), ≥))
(74) (y[4]=y[6]1∧-@z(x[4], 1@z)=x[6]1∧y[6]=y[4]∧z[4]=z[6]1∧x[6]=x[4]∧>@z(x[6], z[6])=TRUE∧z[6]=z[4] ⇒ COND_EVAL4(TRUE, x[4], y[4], z[4])≥NonInfC∧COND_EVAL4(TRUE, x[4], y[4], z[4])≥EVAL(-@z(x[4], 1@z), y[4], z[4])∧(UIncreasing(EVAL(-@z(x[4], 1@z), y[4], z[4])), ≥))
(75) (>@z(x[6], z[6])=TRUE ⇒ COND_EVAL4(TRUE, x[6], y[6], z[6])≥NonInfC∧COND_EVAL4(TRUE, x[6], y[6], z[6])≥EVAL(-@z(x[6], 1@z), y[6], z[6])∧(UIncreasing(EVAL(-@z(x[4], 1@z), y[4], z[4])), ≥))
(76) (x[6] + -1 + (-1)z[6] ≥ 0 ⇒ (UIncreasing(EVAL(-@z(x[4], 1@z), y[4], z[4])), ≥)∧-1 + (-1)Bound + (-1)z[6] + x[6] ≥ 0∧0 ≥ 0)
(77) (x[6] + -1 + (-1)z[6] ≥ 0 ⇒ (UIncreasing(EVAL(-@z(x[4], 1@z), y[4], z[4])), ≥)∧-1 + (-1)Bound + (-1)z[6] + x[6] ≥ 0∧0 ≥ 0)
(78) (x[6] + -1 + (-1)z[6] ≥ 0 ⇒ 0 ≥ 0∧-1 + (-1)Bound + (-1)z[6] + x[6] ≥ 0∧(UIncreasing(EVAL(-@z(x[4], 1@z), y[4], z[4])), ≥))
(79) (x[6] + -1 + (-1)z[6] ≥ 0 ⇒ -1 + (-1)Bound + (-1)z[6] + x[6] ≥ 0∧0 ≥ 0∧0 = 0∧0 = 0∧(UIncreasing(EVAL(-@z(x[4], 1@z), y[4], z[4])), ≥))
(80) (x[6] ≥ 0 ⇒ (-1)Bound + x[6] ≥ 0∧0 ≥ 0∧0 = 0∧0 = 0∧(UIncreasing(EVAL(-@z(x[4], 1@z), y[4], z[4])), ≥))
(81) (x[6] ≥ 0∧z[6] ≥ 0 ⇒ (-1)Bound + x[6] ≥ 0∧0 ≥ 0∧0 = 0∧0 = 0∧(UIncreasing(EVAL(-@z(x[4], 1@z), y[4], z[4])), ≥))
(82) (x[6] ≥ 0∧z[6] ≥ 0 ⇒ (-1)Bound + x[6] ≥ 0∧0 ≥ 0∧0 = 0∧0 = 0∧(UIncreasing(EVAL(-@z(x[4], 1@z), y[4], z[4])), ≥))
(83) (y[6]=y[4]∧z[4]=z[1]∧x[6]=x[4]∧y[4]=y[1]∧-@z(x[4], 1@z)=x[1]∧>@z(x[6], z[6])=TRUE∧z[6]=z[4] ⇒ COND_EVAL4(TRUE, x[4], y[4], z[4])≥NonInfC∧COND_EVAL4(TRUE, x[4], y[4], z[4])≥EVAL(-@z(x[4], 1@z), y[4], z[4])∧(UIncreasing(EVAL(-@z(x[4], 1@z), y[4], z[4])), ≥))
(84) (>@z(x[6], z[6])=TRUE ⇒ COND_EVAL4(TRUE, x[6], y[6], z[6])≥NonInfC∧COND_EVAL4(TRUE, x[6], y[6], z[6])≥EVAL(-@z(x[6], 1@z), y[6], z[6])∧(UIncreasing(EVAL(-@z(x[4], 1@z), y[4], z[4])), ≥))
(85) (x[6] + -1 + (-1)z[6] ≥ 0 ⇒ (UIncreasing(EVAL(-@z(x[4], 1@z), y[4], z[4])), ≥)∧-1 + (-1)Bound + (-1)z[6] + x[6] ≥ 0∧0 ≥ 0)
(86) (x[6] + -1 + (-1)z[6] ≥ 0 ⇒ (UIncreasing(EVAL(-@z(x[4], 1@z), y[4], z[4])), ≥)∧-1 + (-1)Bound + (-1)z[6] + x[6] ≥ 0∧0 ≥ 0)
(87) (x[6] + -1 + (-1)z[6] ≥ 0 ⇒ -1 + (-1)Bound + (-1)z[6] + x[6] ≥ 0∧0 ≥ 0∧(UIncreasing(EVAL(-@z(x[4], 1@z), y[4], z[4])), ≥))
(88) (x[6] + -1 + (-1)z[6] ≥ 0 ⇒ 0 = 0∧0 ≥ 0∧0 = 0∧-1 + (-1)Bound + (-1)z[6] + x[6] ≥ 0∧(UIncreasing(EVAL(-@z(x[4], 1@z), y[4], z[4])), ≥))
(89) (x[6] ≥ 0 ⇒ 0 = 0∧0 ≥ 0∧0 = 0∧(-1)Bound + x[6] ≥ 0∧(UIncreasing(EVAL(-@z(x[4], 1@z), y[4], z[4])), ≥))
(90) (x[6] ≥ 0∧z[6] ≥ 0 ⇒ 0 = 0∧0 ≥ 0∧0 = 0∧(-1)Bound + x[6] ≥ 0∧(UIncreasing(EVAL(-@z(x[4], 1@z), y[4], z[4])), ≥))
(91) (x[6] ≥ 0∧z[6] ≥ 0 ⇒ 0 = 0∧0 ≥ 0∧0 = 0∧(-1)Bound + x[6] ≥ 0∧(UIncreasing(EVAL(-@z(x[4], 1@z), y[4], z[4])), ≥))
(92) (EVAL(x[6], y[6], z[6])≥NonInfC∧EVAL(x[6], y[6], z[6])≥COND_EVAL4(>@z(x[6], z[6]), x[6], y[6], z[6])∧(UIncreasing(COND_EVAL4(>@z(x[6], z[6]), x[6], y[6], z[6])), ≥))
(93) ((UIncreasing(COND_EVAL4(>@z(x[6], z[6]), x[6], y[6], z[6])), ≥)∧0 ≥ 0∧0 ≥ 0)
(94) ((UIncreasing(COND_EVAL4(>@z(x[6], z[6]), x[6], y[6], z[6])), ≥)∧0 ≥ 0∧0 ≥ 0)
(95) (0 ≥ 0∧(UIncreasing(COND_EVAL4(>@z(x[6], z[6]), x[6], y[6], z[6])), ≥)∧0 ≥ 0)
(96) (0 = 0∧0 = 0∧0 = 0∧0 ≥ 0∧0 = 0∧0 ≥ 0∧0 = 0∧0 = 0∧(UIncreasing(COND_EVAL4(>@z(x[6], z[6]), x[6], y[6], z[6])), ≥))
POL(-@z(x1, x2)) = x1 + (-1)x2
POL(>=@z(x1, x2)) = -1
POL(COND_EVAL1(x1, x2, x3, x4)) = -1 + (-1)x4 + x2 + (-1)x1
POL(TRUE) = 0
POL(&&(x1, x2)) = 0
POL(COND_EVAL4(x1, x2, x3, x4)) = -1 + (-1)x4 + x2
POL(COND_EVAL(x1, x2, x3, x4)) = -1 + (-1)x4 + x2 + (-1)x1
POL(EVAL(x1, x2, x3)) = -1 + (-1)x3 + x1
POL(FALSE) = 2
POL(1@z) = 1
POL(undefined) = -1
POL(>@z(x1, x2)) = -1
COND_EVAL4(TRUE, x[4], y[4], z[4]) → EVAL(-@z(x[4], 1@z), y[4], z[4])
COND_EVAL4(TRUE, x[4], y[4], z[4]) → EVAL(-@z(x[4], 1@z), y[4], z[4])
COND_EVAL1(TRUE, x[11], y[11], z[11]) → EVAL(x[11], -@z(y[11], 1@z), z[11])
EVAL(x[1], y[1], z[1]) → COND_EVAL1(&&(>@z(y[1], z[1]), >=@z(z[1], x[1])), x[1], y[1], z[1])
COND_EVAL(TRUE, x[0], y[0], z[0]) → EVAL(-@z(x[0], 1@z), y[0], z[0])
EVAL(x[2], y[2], z[2]) → COND_EVAL(&&(>@z(y[2], z[2]), >@z(x[2], z[2])), x[2], y[2], z[2])
EVAL(x[6], y[6], z[6]) → COND_EVAL4(>@z(x[6], z[6]), x[6], y[6], z[6])
FALSE1 → &&(FALSE, FALSE)1
-@z1 ↔
TRUE1 → &&(TRUE, TRUE)1
FALSE1 → &&(TRUE, FALSE)1
FALSE1 → &&(FALSE, TRUE)1
↳ ITRS
↳ ITRStoIDPProof
↳ IDP
↳ UsableRulesProof
↳ IDP
↳ IDPNonInfProof
↳ IDP
↳ IDependencyGraphProof
↳ IDP
↳ IDPNonInfProof
↳ AND
↳ IDP
↳ IDP
↳ IDependencyGraphProof
↳ IDP
↳ IDPNonInfProof
↳ IDP
↳ IDependencyGraphProof
↳ IDP
↳ IDPNonInfProof
↳ IDP
↳ IDependencyGraphProof
z
(0) -> (2), if ((y[0] →* y[2])∧(z[0] →* z[2])∧(-@z(x[0], 1@z) →* x[2]))
(11) -> (6), if ((-@z(y[11], 1@z) →* y[6])∧(z[11] →* z[6])∧(x[11] →* x[6]))
(0) -> (6), if ((y[0] →* y[6])∧(z[0] →* z[6])∧(-@z(x[0], 1@z) →* x[6]))
(11) -> (1), if ((-@z(y[11], 1@z) →* y[1])∧(z[11] →* z[1])∧(x[11] →* x[1]))
(1) -> (11), if ((z[1] →* z[11])∧(x[1] →* x[11])∧(y[1] →* y[11])∧(&&(>@z(y[1], z[1]), >=@z(z[1], x[1])) →* TRUE))
(0) -> (1), if ((y[0] →* y[1])∧(z[0] →* z[1])∧(-@z(x[0], 1@z) →* x[1]))
(2) -> (0), if ((z[2] →* z[0])∧(x[2] →* x[0])∧(y[2] →* y[0])∧(&&(>@z(y[2], z[2]), >@z(x[2], z[2])) →* TRUE))
(11) -> (2), if ((-@z(y[11], 1@z) →* y[2])∧(z[11] →* z[2])∧(x[11] →* x[2]))
eval(x0, x1, x2)
Cond_eval5(TRUE, x0, x1, x2)
Cond_eval2(TRUE, x0, x1, x2)
Cond_eval4(TRUE, x0, x1, x2)
Cond_eval(TRUE, x0, x1, x2)
Cond_eval1(TRUE, x0, x1, x2)
Cond_eval3(TRUE, x0, x1, x2)
↳ ITRS
↳ ITRStoIDPProof
↳ IDP
↳ UsableRulesProof
↳ IDP
↳ IDPNonInfProof
↳ IDP
↳ IDependencyGraphProof
↳ IDP
↳ IDPNonInfProof
↳ AND
↳ IDP
↳ IDP
↳ IDependencyGraphProof
↳ IDP
↳ IDPNonInfProof
↳ IDP
↳ IDependencyGraphProof
↳ IDP
↳ IDPNonInfProof
↳ IDP
↳ IDependencyGraphProof
↳ IDP
↳ IDPNonInfProof
z
(0) -> (2), if ((y[0] →* y[2])∧(z[0] →* z[2])∧(-@z(x[0], 1@z) →* x[2]))
(11) -> (1), if ((-@z(y[11], 1@z) →* y[1])∧(z[11] →* z[1])∧(x[11] →* x[1]))
(1) -> (11), if ((z[1] →* z[11])∧(x[1] →* x[11])∧(y[1] →* y[11])∧(&&(>@z(y[1], z[1]), >=@z(z[1], x[1])) →* TRUE))
(0) -> (1), if ((y[0] →* y[1])∧(z[0] →* z[1])∧(-@z(x[0], 1@z) →* x[1]))
(2) -> (0), if ((z[2] →* z[0])∧(x[2] →* x[0])∧(y[2] →* y[0])∧(&&(>@z(y[2], z[2]), >@z(x[2], z[2])) →* TRUE))
(11) -> (2), if ((-@z(y[11], 1@z) →* y[2])∧(z[11] →* z[2])∧(x[11] →* x[2]))
eval(x0, x1, x2)
Cond_eval5(TRUE, x0, x1, x2)
Cond_eval2(TRUE, x0, x1, x2)
Cond_eval4(TRUE, x0, x1, x2)
Cond_eval(TRUE, x0, x1, x2)
Cond_eval1(TRUE, x0, x1, x2)
Cond_eval3(TRUE, x0, x1, x2)
(1) (&&(>@z(y[1], z[1]), >=@z(z[1], x[1]))=TRUE∧z[11]=z[2]∧y[1]=y[11]∧x[1]=x[11]∧z[1]=z[11]∧x[11]=x[2]∧-@z(y[11], 1@z)=y[2] ⇒ COND_EVAL1(TRUE, x[11], y[11], z[11])≥NonInfC∧COND_EVAL1(TRUE, x[11], y[11], z[11])≥EVAL(x[11], -@z(y[11], 1@z), z[11])∧(UIncreasing(EVAL(x[11], -@z(y[11], 1@z), z[11])), ≥))
(2) (>@z(y[1], z[1])=TRUE∧>=@z(z[1], x[1])=TRUE ⇒ COND_EVAL1(TRUE, x[1], y[1], z[1])≥NonInfC∧COND_EVAL1(TRUE, x[1], y[1], z[1])≥EVAL(x[1], -@z(y[1], 1@z), z[1])∧(UIncreasing(EVAL(x[11], -@z(y[11], 1@z), z[11])), ≥))
(3) (-1 + y[1] + (-1)z[1] ≥ 0∧z[1] + (-1)x[1] ≥ 0 ⇒ (UIncreasing(EVAL(x[11], -@z(y[11], 1@z), z[11])), ≥)∧0 ≥ 0∧0 ≥ 0)
(4) (-1 + y[1] + (-1)z[1] ≥ 0∧z[1] + (-1)x[1] ≥ 0 ⇒ (UIncreasing(EVAL(x[11], -@z(y[11], 1@z), z[11])), ≥)∧0 ≥ 0∧0 ≥ 0)
(5) (-1 + y[1] + (-1)z[1] ≥ 0∧z[1] + (-1)x[1] ≥ 0 ⇒ 0 ≥ 0∧(UIncreasing(EVAL(x[11], -@z(y[11], 1@z), z[11])), ≥)∧0 ≥ 0)
(6) (-1 + y[1] + (-1)z[1] ≥ 0∧x[1] ≥ 0 ⇒ 0 ≥ 0∧(UIncreasing(EVAL(x[11], -@z(y[11], 1@z), z[11])), ≥)∧0 ≥ 0)
(7) (y[1] ≥ 0∧x[1] ≥ 0 ⇒ 0 ≥ 0∧(UIncreasing(EVAL(x[11], -@z(y[11], 1@z), z[11])), ≥)∧0 ≥ 0)
(8) (y[1] ≥ 0∧x[1] ≥ 0∧z[1] ≥ 0 ⇒ 0 ≥ 0∧(UIncreasing(EVAL(x[11], -@z(y[11], 1@z), z[11])), ≥)∧0 ≥ 0)
(9) (y[1] ≥ 0∧x[1] ≥ 0∧z[1] ≥ 0 ⇒ 0 ≥ 0∧(UIncreasing(EVAL(x[11], -@z(y[11], 1@z), z[11])), ≥)∧0 ≥ 0)
(10) (-@z(y[11], 1@z)=y[1]1∧&&(>@z(y[1], z[1]), >=@z(z[1], x[1]))=TRUE∧x[11]=x[1]1∧y[1]=y[11]∧x[1]=x[11]∧z[1]=z[11]∧z[11]=z[1]1 ⇒ COND_EVAL1(TRUE, x[11], y[11], z[11])≥NonInfC∧COND_EVAL1(TRUE, x[11], y[11], z[11])≥EVAL(x[11], -@z(y[11], 1@z), z[11])∧(UIncreasing(EVAL(x[11], -@z(y[11], 1@z), z[11])), ≥))
(11) (>@z(y[1], z[1])=TRUE∧>=@z(z[1], x[1])=TRUE ⇒ COND_EVAL1(TRUE, x[1], y[1], z[1])≥NonInfC∧COND_EVAL1(TRUE, x[1], y[1], z[1])≥EVAL(x[1], -@z(y[1], 1@z), z[1])∧(UIncreasing(EVAL(x[11], -@z(y[11], 1@z), z[11])), ≥))
(12) (-1 + y[1] + (-1)z[1] ≥ 0∧z[1] + (-1)x[1] ≥ 0 ⇒ (UIncreasing(EVAL(x[11], -@z(y[11], 1@z), z[11])), ≥)∧0 ≥ 0∧0 ≥ 0)
(13) (-1 + y[1] + (-1)z[1] ≥ 0∧z[1] + (-1)x[1] ≥ 0 ⇒ (UIncreasing(EVAL(x[11], -@z(y[11], 1@z), z[11])), ≥)∧0 ≥ 0∧0 ≥ 0)
(14) (z[1] + (-1)x[1] ≥ 0∧-1 + y[1] + (-1)z[1] ≥ 0 ⇒ 0 ≥ 0∧(UIncreasing(EVAL(x[11], -@z(y[11], 1@z), z[11])), ≥)∧0 ≥ 0)
(15) (x[1] ≥ 0∧-1 + y[1] + (-1)z[1] ≥ 0 ⇒ 0 ≥ 0∧(UIncreasing(EVAL(x[11], -@z(y[11], 1@z), z[11])), ≥)∧0 ≥ 0)
(16) (x[1] ≥ 0∧y[1] ≥ 0 ⇒ 0 ≥ 0∧(UIncreasing(EVAL(x[11], -@z(y[11], 1@z), z[11])), ≥)∧0 ≥ 0)
(17) (x[1] ≥ 0∧y[1] ≥ 0∧z[1] ≥ 0 ⇒ 0 ≥ 0∧(UIncreasing(EVAL(x[11], -@z(y[11], 1@z), z[11])), ≥)∧0 ≥ 0)
(18) (x[1] ≥ 0∧y[1] ≥ 0∧z[1] ≥ 0 ⇒ 0 ≥ 0∧(UIncreasing(EVAL(x[11], -@z(y[11], 1@z), z[11])), ≥)∧0 ≥ 0)
(19) (EVAL(x[1], y[1], z[1])≥NonInfC∧EVAL(x[1], y[1], z[1])≥COND_EVAL1(&&(>@z(y[1], z[1]), >=@z(z[1], x[1])), x[1], y[1], z[1])∧(UIncreasing(COND_EVAL1(&&(>@z(y[1], z[1]), >=@z(z[1], x[1])), x[1], y[1], z[1])), ≥))
(20) ((UIncreasing(COND_EVAL1(&&(>@z(y[1], z[1]), >=@z(z[1], x[1])), x[1], y[1], z[1])), ≥)∧0 ≥ 0∧0 ≥ 0)
(21) ((UIncreasing(COND_EVAL1(&&(>@z(y[1], z[1]), >=@z(z[1], x[1])), x[1], y[1], z[1])), ≥)∧0 ≥ 0∧0 ≥ 0)
(22) (0 ≥ 0∧(UIncreasing(COND_EVAL1(&&(>@z(y[1], z[1]), >=@z(z[1], x[1])), x[1], y[1], z[1])), ≥)∧0 ≥ 0)
(23) (0 ≥ 0∧0 = 0∧0 = 0∧0 = 0∧0 ≥ 0∧0 = 0∧0 = 0∧(UIncreasing(COND_EVAL1(&&(>@z(y[1], z[1]), >=@z(z[1], x[1])), x[1], y[1], z[1])), ≥)∧0 = 0)
(24) (EVAL(x[2], y[2], z[2])≥NonInfC∧EVAL(x[2], y[2], z[2])≥COND_EVAL(&&(>@z(y[2], z[2]), >@z(x[2], z[2])), x[2], y[2], z[2])∧(UIncreasing(COND_EVAL(&&(>@z(y[2], z[2]), >@z(x[2], z[2])), x[2], y[2], z[2])), ≥))
(25) ((UIncreasing(COND_EVAL(&&(>@z(y[2], z[2]), >@z(x[2], z[2])), x[2], y[2], z[2])), ≥)∧0 ≥ 0∧0 ≥ 0)
(26) ((UIncreasing(COND_EVAL(&&(>@z(y[2], z[2]), >@z(x[2], z[2])), x[2], y[2], z[2])), ≥)∧0 ≥ 0∧0 ≥ 0)
(27) (0 ≥ 0∧(UIncreasing(COND_EVAL(&&(>@z(y[2], z[2]), >@z(x[2], z[2])), x[2], y[2], z[2])), ≥)∧0 ≥ 0)
(28) (0 = 0∧0 = 0∧0 = 0∧0 = 0∧0 = 0∧0 = 0∧0 ≥ 0∧(UIncreasing(COND_EVAL(&&(>@z(y[2], z[2]), >@z(x[2], z[2])), x[2], y[2], z[2])), ≥)∧0 ≥ 0)
(29) (-@z(x[0], 1@z)=x[1]∧z[2]=z[0]∧x[2]=x[0]∧&&(>@z(y[2], z[2]), >@z(x[2], z[2]))=TRUE∧y[2]=y[0]∧y[0]=y[1]∧z[0]=z[1] ⇒ COND_EVAL(TRUE, x[0], y[0], z[0])≥NonInfC∧COND_EVAL(TRUE, x[0], y[0], z[0])≥EVAL(-@z(x[0], 1@z), y[0], z[0])∧(UIncreasing(EVAL(-@z(x[0], 1@z), y[0], z[0])), ≥))
(30) (>@z(y[2], z[2])=TRUE∧>@z(x[2], z[2])=TRUE ⇒ COND_EVAL(TRUE, x[2], y[2], z[2])≥NonInfC∧COND_EVAL(TRUE, x[2], y[2], z[2])≥EVAL(-@z(x[2], 1@z), y[2], z[2])∧(UIncreasing(EVAL(-@z(x[0], 1@z), y[0], z[0])), ≥))
(31) (y[2] + -1 + (-1)z[2] ≥ 0∧-1 + x[2] + (-1)z[2] ≥ 0 ⇒ (UIncreasing(EVAL(-@z(x[0], 1@z), y[0], z[0])), ≥)∧(-1)Bound + (-1)z[2] + y[2] ≥ 0∧0 ≥ 0)
(32) (y[2] + -1 + (-1)z[2] ≥ 0∧-1 + x[2] + (-1)z[2] ≥ 0 ⇒ (UIncreasing(EVAL(-@z(x[0], 1@z), y[0], z[0])), ≥)∧(-1)Bound + (-1)z[2] + y[2] ≥ 0∧0 ≥ 0)
(33) (-1 + x[2] + (-1)z[2] ≥ 0∧y[2] + -1 + (-1)z[2] ≥ 0 ⇒ 0 ≥ 0∧(-1)Bound + (-1)z[2] + y[2] ≥ 0∧(UIncreasing(EVAL(-@z(x[0], 1@z), y[0], z[0])), ≥))
(34) (x[2] ≥ 0∧y[2] + -1 + (-1)z[2] ≥ 0 ⇒ 0 ≥ 0∧(-1)Bound + (-1)z[2] + y[2] ≥ 0∧(UIncreasing(EVAL(-@z(x[0], 1@z), y[0], z[0])), ≥))
(35) (x[2] ≥ 0∧z[2] ≥ 0 ⇒ 0 ≥ 0∧1 + (-1)Bound + z[2] ≥ 0∧(UIncreasing(EVAL(-@z(x[0], 1@z), y[0], z[0])), ≥))
(36) (x[2] ≥ 0∧z[2] ≥ 0∧y[2] ≥ 0 ⇒ 0 ≥ 0∧1 + (-1)Bound + z[2] ≥ 0∧(UIncreasing(EVAL(-@z(x[0], 1@z), y[0], z[0])), ≥))
(37) (x[2] ≥ 0∧z[2] ≥ 0∧y[2] ≥ 0 ⇒ 0 ≥ 0∧1 + (-1)Bound + z[2] ≥ 0∧(UIncreasing(EVAL(-@z(x[0], 1@z), y[0], z[0])), ≥))
(38) (z[2]=z[0]∧z[0]=z[2]1∧x[2]=x[0]∧&&(>@z(y[2], z[2]), >@z(x[2], z[2]))=TRUE∧y[0]=y[2]1∧-@z(x[0], 1@z)=x[2]1∧y[2]=y[0] ⇒ COND_EVAL(TRUE, x[0], y[0], z[0])≥NonInfC∧COND_EVAL(TRUE, x[0], y[0], z[0])≥EVAL(-@z(x[0], 1@z), y[0], z[0])∧(UIncreasing(EVAL(-@z(x[0], 1@z), y[0], z[0])), ≥))
(39) (>@z(y[2], z[2])=TRUE∧>@z(x[2], z[2])=TRUE ⇒ COND_EVAL(TRUE, x[2], y[2], z[2])≥NonInfC∧COND_EVAL(TRUE, x[2], y[2], z[2])≥EVAL(-@z(x[2], 1@z), y[2], z[2])∧(UIncreasing(EVAL(-@z(x[0], 1@z), y[0], z[0])), ≥))
(40) (y[2] + -1 + (-1)z[2] ≥ 0∧-1 + x[2] + (-1)z[2] ≥ 0 ⇒ (UIncreasing(EVAL(-@z(x[0], 1@z), y[0], z[0])), ≥)∧(-1)Bound + (-1)z[2] + y[2] ≥ 0∧0 ≥ 0)
(41) (y[2] + -1 + (-1)z[2] ≥ 0∧-1 + x[2] + (-1)z[2] ≥ 0 ⇒ (UIncreasing(EVAL(-@z(x[0], 1@z), y[0], z[0])), ≥)∧(-1)Bound + (-1)z[2] + y[2] ≥ 0∧0 ≥ 0)
(42) (-1 + x[2] + (-1)z[2] ≥ 0∧y[2] + -1 + (-1)z[2] ≥ 0 ⇒ (-1)Bound + (-1)z[2] + y[2] ≥ 0∧0 ≥ 0∧(UIncreasing(EVAL(-@z(x[0], 1@z), y[0], z[0])), ≥))
(43) (x[2] ≥ 0∧y[2] + -1 + (-1)z[2] ≥ 0 ⇒ (-1)Bound + (-1)z[2] + y[2] ≥ 0∧0 ≥ 0∧(UIncreasing(EVAL(-@z(x[0], 1@z), y[0], z[0])), ≥))
(44) (x[2] ≥ 0∧z[2] ≥ 0 ⇒ 1 + (-1)Bound + z[2] ≥ 0∧0 ≥ 0∧(UIncreasing(EVAL(-@z(x[0], 1@z), y[0], z[0])), ≥))
(45) (x[2] ≥ 0∧z[2] ≥ 0∧y[2] ≥ 0 ⇒ 1 + (-1)Bound + z[2] ≥ 0∧0 ≥ 0∧(UIncreasing(EVAL(-@z(x[0], 1@z), y[0], z[0])), ≥))
(46) (x[2] ≥ 0∧z[2] ≥ 0∧y[2] ≥ 0 ⇒ 1 + (-1)Bound + z[2] ≥ 0∧0 ≥ 0∧(UIncreasing(EVAL(-@z(x[0], 1@z), y[0], z[0])), ≥))
POL(-@z(x1, x2)) = x1 + (-1)x2
POL(>=@z(x1, x2)) = -1
POL(COND_EVAL1(x1, x2, x3, x4)) = -1 + (-1)x4 + x3 + (-1)x1
POL(TRUE) = -1
POL(&&(x1, x2)) = -1
POL(COND_EVAL(x1, x2, x3, x4)) = -1 + (-1)x4 + x3 + (-1)x1
POL(EVAL(x1, x2, x3)) = (-1)x3 + x2
POL(FALSE) = -1
POL(1@z) = 1
POL(undefined) = -1
POL(>@z(x1, x2)) = -1
COND_EVAL1(TRUE, x[11], y[11], z[11]) → EVAL(x[11], -@z(y[11], 1@z), z[11])
COND_EVAL(TRUE, x[0], y[0], z[0]) → EVAL(-@z(x[0], 1@z), y[0], z[0])
EVAL(x[1], y[1], z[1]) → COND_EVAL1(&&(>@z(y[1], z[1]), >=@z(z[1], x[1])), x[1], y[1], z[1])
EVAL(x[2], y[2], z[2]) → COND_EVAL(&&(>@z(y[2], z[2]), >@z(x[2], z[2])), x[2], y[2], z[2])
COND_EVAL(TRUE, x[0], y[0], z[0]) → EVAL(-@z(x[0], 1@z), y[0], z[0])
&&(FALSE, FALSE)1 ↔ FALSE1
-@z1 ↔
&&(TRUE, TRUE)1 ↔ TRUE1
&&(FALSE, TRUE)1 ↔ FALSE1
&&(TRUE, FALSE)1 ↔ FALSE1
↳ ITRS
↳ ITRStoIDPProof
↳ IDP
↳ UsableRulesProof
↳ IDP
↳ IDPNonInfProof
↳ IDP
↳ IDependencyGraphProof
↳ IDP
↳ IDPNonInfProof
↳ AND
↳ IDP
↳ IDP
↳ IDependencyGraphProof
↳ IDP
↳ IDPNonInfProof
↳ IDP
↳ IDependencyGraphProof
↳ IDP
↳ IDPNonInfProof
↳ IDP
↳ IDependencyGraphProof
↳ IDP
↳ IDPNonInfProof
↳ AND
↳ IDP
↳ IDependencyGraphProof
↳ IDP
z
(0) -> (2), if ((y[0] →* y[2])∧(z[0] →* z[2])∧(-@z(x[0], 1@z) →* x[2]))
(0) -> (1), if ((y[0] →* y[1])∧(z[0] →* z[1])∧(-@z(x[0], 1@z) →* x[1]))
(2) -> (0), if ((z[2] →* z[0])∧(x[2] →* x[0])∧(y[2] →* y[0])∧(&&(>@z(y[2], z[2]), >@z(x[2], z[2])) →* TRUE))
eval(x0, x1, x2)
Cond_eval5(TRUE, x0, x1, x2)
Cond_eval2(TRUE, x0, x1, x2)
Cond_eval4(TRUE, x0, x1, x2)
Cond_eval(TRUE, x0, x1, x2)
Cond_eval1(TRUE, x0, x1, x2)
Cond_eval3(TRUE, x0, x1, x2)
↳ ITRS
↳ ITRStoIDPProof
↳ IDP
↳ UsableRulesProof
↳ IDP
↳ IDPNonInfProof
↳ IDP
↳ IDependencyGraphProof
↳ IDP
↳ IDPNonInfProof
↳ AND
↳ IDP
↳ IDP
↳ IDependencyGraphProof
↳ IDP
↳ IDPNonInfProof
↳ IDP
↳ IDependencyGraphProof
↳ IDP
↳ IDPNonInfProof
↳ IDP
↳ IDependencyGraphProof
↳ IDP
↳ IDPNonInfProof
↳ AND
↳ IDP
↳ IDependencyGraphProof
↳ IDP
↳ IDPNonInfProof
↳ IDP
z
(0) -> (2), if ((y[0] →* y[2])∧(z[0] →* z[2])∧(-@z(x[0], 1@z) →* x[2]))
(2) -> (0), if ((z[2] →* z[0])∧(x[2] →* x[0])∧(y[2] →* y[0])∧(&&(>@z(y[2], z[2]), >@z(x[2], z[2])) →* TRUE))
eval(x0, x1, x2)
Cond_eval5(TRUE, x0, x1, x2)
Cond_eval2(TRUE, x0, x1, x2)
Cond_eval4(TRUE, x0, x1, x2)
Cond_eval(TRUE, x0, x1, x2)
Cond_eval1(TRUE, x0, x1, x2)
Cond_eval3(TRUE, x0, x1, x2)
(1) (EVAL(x[2], y[2], z[2])≥NonInfC∧EVAL(x[2], y[2], z[2])≥COND_EVAL(&&(>@z(y[2], z[2]), >@z(x[2], z[2])), x[2], y[2], z[2])∧(UIncreasing(COND_EVAL(&&(>@z(y[2], z[2]), >@z(x[2], z[2])), x[2], y[2], z[2])), ≥))
(2) ((UIncreasing(COND_EVAL(&&(>@z(y[2], z[2]), >@z(x[2], z[2])), x[2], y[2], z[2])), ≥)∧0 ≥ 0∧0 ≥ 0)
(3) ((UIncreasing(COND_EVAL(&&(>@z(y[2], z[2]), >@z(x[2], z[2])), x[2], y[2], z[2])), ≥)∧0 ≥ 0∧0 ≥ 0)
(4) (0 ≥ 0∧0 ≥ 0∧(UIncreasing(COND_EVAL(&&(>@z(y[2], z[2]), >@z(x[2], z[2])), x[2], y[2], z[2])), ≥))
(5) (0 = 0∧0 = 0∧0 ≥ 0∧0 = 0∧0 ≥ 0∧0 = 0∧0 = 0∧(UIncreasing(COND_EVAL(&&(>@z(y[2], z[2]), >@z(x[2], z[2])), x[2], y[2], z[2])), ≥)∧0 = 0)
(6) (z[2]=z[0]∧z[0]=z[2]1∧x[2]=x[0]∧&&(>@z(y[2], z[2]), >@z(x[2], z[2]))=TRUE∧y[0]=y[2]1∧-@z(x[0], 1@z)=x[2]1∧y[2]=y[0] ⇒ COND_EVAL(TRUE, x[0], y[0], z[0])≥NonInfC∧COND_EVAL(TRUE, x[0], y[0], z[0])≥EVAL(-@z(x[0], 1@z), y[0], z[0])∧(UIncreasing(EVAL(-@z(x[0], 1@z), y[0], z[0])), ≥))
(7) (>@z(y[2], z[2])=TRUE∧>@z(x[2], z[2])=TRUE ⇒ COND_EVAL(TRUE, x[2], y[2], z[2])≥NonInfC∧COND_EVAL(TRUE, x[2], y[2], z[2])≥EVAL(-@z(x[2], 1@z), y[2], z[2])∧(UIncreasing(EVAL(-@z(x[0], 1@z), y[0], z[0])), ≥))
(8) (y[2] + -1 + (-1)z[2] ≥ 0∧-1 + x[2] + (-1)z[2] ≥ 0 ⇒ (UIncreasing(EVAL(-@z(x[0], 1@z), y[0], z[0])), ≥)∧-1 + (-1)Bound + (-1)z[2] + x[2] ≥ 0∧0 ≥ 0)
(9) (y[2] + -1 + (-1)z[2] ≥ 0∧-1 + x[2] + (-1)z[2] ≥ 0 ⇒ (UIncreasing(EVAL(-@z(x[0], 1@z), y[0], z[0])), ≥)∧-1 + (-1)Bound + (-1)z[2] + x[2] ≥ 0∧0 ≥ 0)
(10) (-1 + x[2] + (-1)z[2] ≥ 0∧y[2] + -1 + (-1)z[2] ≥ 0 ⇒ 0 ≥ 0∧-1 + (-1)Bound + (-1)z[2] + x[2] ≥ 0∧(UIncreasing(EVAL(-@z(x[0], 1@z), y[0], z[0])), ≥))
(11) (x[2] ≥ 0∧y[2] + -1 + (-1)z[2] ≥ 0 ⇒ 0 ≥ 0∧(-1)Bound + x[2] ≥ 0∧(UIncreasing(EVAL(-@z(x[0], 1@z), y[0], z[0])), ≥))
(12) (x[2] ≥ 0∧z[2] ≥ 0 ⇒ 0 ≥ 0∧(-1)Bound + x[2] ≥ 0∧(UIncreasing(EVAL(-@z(x[0], 1@z), y[0], z[0])), ≥))
(13) (x[2] ≥ 0∧z[2] ≥ 0∧y[2] ≥ 0 ⇒ 0 ≥ 0∧(-1)Bound + x[2] ≥ 0∧(UIncreasing(EVAL(-@z(x[0], 1@z), y[0], z[0])), ≥))
(14) (x[2] ≥ 0∧z[2] ≥ 0∧y[2] ≥ 0 ⇒ 0 ≥ 0∧(-1)Bound + x[2] ≥ 0∧(UIncreasing(EVAL(-@z(x[0], 1@z), y[0], z[0])), ≥))
POL(-@z(x1, x2)) = x1 + (-1)x2
POL(TRUE) = 0
POL(&&(x1, x2)) = -1
POL(COND_EVAL(x1, x2, x3, x4)) = -1 + (-1)x4 + x2
POL(EVAL(x1, x2, x3)) = -1 + (-1)x3 + x1
POL(FALSE) = -1
POL(1@z) = 1
POL(undefined) = -1
POL(>@z(x1, x2)) = -1
COND_EVAL(TRUE, x[0], y[0], z[0]) → EVAL(-@z(x[0], 1@z), y[0], z[0])
COND_EVAL(TRUE, x[0], y[0], z[0]) → EVAL(-@z(x[0], 1@z), y[0], z[0])
EVAL(x[2], y[2], z[2]) → COND_EVAL(&&(>@z(y[2], z[2]), >@z(x[2], z[2])), x[2], y[2], z[2])
FALSE1 → &&(FALSE, FALSE)1
-@z1 ↔
FALSE1 → &&(FALSE, TRUE)1
↳ ITRS
↳ ITRStoIDPProof
↳ IDP
↳ UsableRulesProof
↳ IDP
↳ IDPNonInfProof
↳ IDP
↳ IDependencyGraphProof
↳ IDP
↳ IDPNonInfProof
↳ AND
↳ IDP
↳ IDP
↳ IDependencyGraphProof
↳ IDP
↳ IDPNonInfProof
↳ IDP
↳ IDependencyGraphProof
↳ IDP
↳ IDPNonInfProof
↳ IDP
↳ IDependencyGraphProof
↳ IDP
↳ IDPNonInfProof
↳ AND
↳ IDP
↳ IDependencyGraphProof
↳ IDP
↳ IDPNonInfProof
↳ IDP
↳ IDependencyGraphProof
↳ IDP
z
eval(x0, x1, x2)
Cond_eval5(TRUE, x0, x1, x2)
Cond_eval2(TRUE, x0, x1, x2)
Cond_eval4(TRUE, x0, x1, x2)
Cond_eval(TRUE, x0, x1, x2)
Cond_eval1(TRUE, x0, x1, x2)
Cond_eval3(TRUE, x0, x1, x2)
↳ ITRS
↳ ITRStoIDPProof
↳ IDP
↳ UsableRulesProof
↳ IDP
↳ IDPNonInfProof
↳ IDP
↳ IDependencyGraphProof
↳ IDP
↳ IDPNonInfProof
↳ AND
↳ IDP
↳ IDP
↳ IDependencyGraphProof
↳ IDP
↳ IDPNonInfProof
↳ IDP
↳ IDependencyGraphProof
↳ IDP
↳ IDPNonInfProof
↳ IDP
↳ IDependencyGraphProof
↳ IDP
↳ IDPNonInfProof
↳ AND
↳ IDP
↳ IDP
↳ IDependencyGraphProof
z
(11) -> (1), if ((-@z(y[11], 1@z) →* y[1])∧(z[11] →* z[1])∧(x[11] →* x[1]))
(1) -> (11), if ((z[1] →* z[11])∧(x[1] →* x[11])∧(y[1] →* y[11])∧(&&(>@z(y[1], z[1]), >=@z(z[1], x[1])) →* TRUE))
(11) -> (2), if ((-@z(y[11], 1@z) →* y[2])∧(z[11] →* z[2])∧(x[11] →* x[2]))
eval(x0, x1, x2)
Cond_eval5(TRUE, x0, x1, x2)
Cond_eval2(TRUE, x0, x1, x2)
Cond_eval4(TRUE, x0, x1, x2)
Cond_eval(TRUE, x0, x1, x2)
Cond_eval1(TRUE, x0, x1, x2)
Cond_eval3(TRUE, x0, x1, x2)
↳ ITRS
↳ ITRStoIDPProof
↳ IDP
↳ UsableRulesProof
↳ IDP
↳ IDPNonInfProof
↳ IDP
↳ IDependencyGraphProof
↳ IDP
↳ IDPNonInfProof
↳ AND
↳ IDP
↳ IDP
↳ IDependencyGraphProof
↳ IDP
↳ IDPNonInfProof
↳ IDP
↳ IDependencyGraphProof
↳ IDP
↳ IDPNonInfProof
↳ IDP
↳ IDependencyGraphProof
↳ IDP
↳ IDPNonInfProof
↳ AND
↳ IDP
↳ IDP
↳ IDependencyGraphProof
↳ IDP
↳ IDPNonInfProof
z
(11) -> (1), if ((-@z(y[11], 1@z) →* y[1])∧(z[11] →* z[1])∧(x[11] →* x[1]))
(1) -> (11), if ((z[1] →* z[11])∧(x[1] →* x[11])∧(y[1] →* y[11])∧(&&(>@z(y[1], z[1]), >=@z(z[1], x[1])) →* TRUE))
eval(x0, x1, x2)
Cond_eval5(TRUE, x0, x1, x2)
Cond_eval2(TRUE, x0, x1, x2)
Cond_eval4(TRUE, x0, x1, x2)
Cond_eval(TRUE, x0, x1, x2)
Cond_eval1(TRUE, x0, x1, x2)
Cond_eval3(TRUE, x0, x1, x2)
(1) (EVAL(x[1], y[1], z[1])≥NonInfC∧EVAL(x[1], y[1], z[1])≥COND_EVAL1(&&(>@z(y[1], z[1]), >=@z(z[1], x[1])), x[1], y[1], z[1])∧(UIncreasing(COND_EVAL1(&&(>@z(y[1], z[1]), >=@z(z[1], x[1])), x[1], y[1], z[1])), ≥))
(2) ((UIncreasing(COND_EVAL1(&&(>@z(y[1], z[1]), >=@z(z[1], x[1])), x[1], y[1], z[1])), ≥)∧0 ≥ 0∧0 ≥ 0)
(3) ((UIncreasing(COND_EVAL1(&&(>@z(y[1], z[1]), >=@z(z[1], x[1])), x[1], y[1], z[1])), ≥)∧0 ≥ 0∧0 ≥ 0)
(4) (0 ≥ 0∧0 ≥ 0∧(UIncreasing(COND_EVAL1(&&(>@z(y[1], z[1]), >=@z(z[1], x[1])), x[1], y[1], z[1])), ≥))
(5) (0 = 0∧0 = 0∧0 ≥ 0∧0 = 0∧0 = 0∧0 ≥ 0∧(UIncreasing(COND_EVAL1(&&(>@z(y[1], z[1]), >=@z(z[1], x[1])), x[1], y[1], z[1])), ≥)∧0 = 0∧0 = 0)
(6) (-@z(y[11], 1@z)=y[1]1∧&&(>@z(y[1], z[1]), >=@z(z[1], x[1]))=TRUE∧x[11]=x[1]1∧y[1]=y[11]∧x[1]=x[11]∧z[1]=z[11]∧z[11]=z[1]1 ⇒ COND_EVAL1(TRUE, x[11], y[11], z[11])≥NonInfC∧COND_EVAL1(TRUE, x[11], y[11], z[11])≥EVAL(x[11], -@z(y[11], 1@z), z[11])∧(UIncreasing(EVAL(x[11], -@z(y[11], 1@z), z[11])), ≥))
(7) (>@z(y[1], z[1])=TRUE∧>=@z(z[1], x[1])=TRUE ⇒ COND_EVAL1(TRUE, x[1], y[1], z[1])≥NonInfC∧COND_EVAL1(TRUE, x[1], y[1], z[1])≥EVAL(x[1], -@z(y[1], 1@z), z[1])∧(UIncreasing(EVAL(x[11], -@z(y[11], 1@z), z[11])), ≥))
(8) (-1 + y[1] + (-1)z[1] ≥ 0∧z[1] + (-1)x[1] ≥ 0 ⇒ (UIncreasing(EVAL(x[11], -@z(y[11], 1@z), z[11])), ≥)∧-1 + (-1)Bound + (-1)z[1] + y[1] ≥ 0∧0 ≥ 0)
(9) (-1 + y[1] + (-1)z[1] ≥ 0∧z[1] + (-1)x[1] ≥ 0 ⇒ (UIncreasing(EVAL(x[11], -@z(y[11], 1@z), z[11])), ≥)∧-1 + (-1)Bound + (-1)z[1] + y[1] ≥ 0∧0 ≥ 0)
(10) (-1 + y[1] + (-1)z[1] ≥ 0∧z[1] + (-1)x[1] ≥ 0 ⇒ (UIncreasing(EVAL(x[11], -@z(y[11], 1@z), z[11])), ≥)∧-1 + (-1)Bound + (-1)z[1] + y[1] ≥ 0∧0 ≥ 0)
(11) (-1 + y[1] + (-1)z[1] ≥ 0∧x[1] ≥ 0 ⇒ (UIncreasing(EVAL(x[11], -@z(y[11], 1@z), z[11])), ≥)∧-1 + (-1)Bound + (-1)z[1] + y[1] ≥ 0∧0 ≥ 0)
(12) (y[1] ≥ 0∧x[1] ≥ 0 ⇒ (UIncreasing(EVAL(x[11], -@z(y[11], 1@z), z[11])), ≥)∧(-1)Bound + y[1] ≥ 0∧0 ≥ 0)
(13) (y[1] ≥ 0∧x[1] ≥ 0∧z[1] ≥ 0 ⇒ (UIncreasing(EVAL(x[11], -@z(y[11], 1@z), z[11])), ≥)∧(-1)Bound + y[1] ≥ 0∧0 ≥ 0)
(14) (y[1] ≥ 0∧x[1] ≥ 0∧z[1] ≥ 0 ⇒ (UIncreasing(EVAL(x[11], -@z(y[11], 1@z), z[11])), ≥)∧(-1)Bound + y[1] ≥ 0∧0 ≥ 0)
POL(-@z(x1, x2)) = x1 + (-1)x2
POL(>=@z(x1, x2)) = -1
POL(COND_EVAL1(x1, x2, x3, x4)) = -1 + (-1)x4 + x3
POL(TRUE) = -1
POL(&&(x1, x2)) = -1
POL(EVAL(x1, x2, x3)) = -1 + (-1)x3 + x2
POL(FALSE) = -1
POL(1@z) = 1
POL(undefined) = -1
POL(>@z(x1, x2)) = -1
COND_EVAL1(TRUE, x[11], y[11], z[11]) → EVAL(x[11], -@z(y[11], 1@z), z[11])
COND_EVAL1(TRUE, x[11], y[11], z[11]) → EVAL(x[11], -@z(y[11], 1@z), z[11])
EVAL(x[1], y[1], z[1]) → COND_EVAL1(&&(>@z(y[1], z[1]), >=@z(z[1], x[1])), x[1], y[1], z[1])
&&(FALSE, FALSE)1 ↔ FALSE1
-@z1 ↔
&&(TRUE, TRUE)1 ↔ TRUE1
FALSE1 → &&(TRUE, FALSE)1
&&(FALSE, TRUE)1 ↔ FALSE1
↳ ITRS
↳ ITRStoIDPProof
↳ IDP
↳ UsableRulesProof
↳ IDP
↳ IDPNonInfProof
↳ IDP
↳ IDependencyGraphProof
↳ IDP
↳ IDPNonInfProof
↳ AND
↳ IDP
↳ IDP
↳ IDependencyGraphProof
↳ IDP
↳ IDPNonInfProof
↳ IDP
↳ IDependencyGraphProof
↳ IDP
↳ IDPNonInfProof
↳ IDP
↳ IDependencyGraphProof
↳ IDP
↳ IDPNonInfProof
↳ AND
↳ IDP
↳ IDP
↳ IDependencyGraphProof
↳ IDP
↳ IDPNonInfProof
↳ IDP
↳ IDependencyGraphProof
z
eval(x0, x1, x2)
Cond_eval5(TRUE, x0, x1, x2)
Cond_eval2(TRUE, x0, x1, x2)
Cond_eval4(TRUE, x0, x1, x2)
Cond_eval(TRUE, x0, x1, x2)
Cond_eval1(TRUE, x0, x1, x2)
Cond_eval3(TRUE, x0, x1, x2)